Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Immunol ; 213(4): 419-434, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38949522

RESUMEN

The Krebs cycle enzyme aconitate decarboxylase 1 (ACOD1) mediates itaconate synthesis in monocytes and macrophages. Previously, we reported that administration of 4-octyl itaconate to lupus-prone mice abrogated immune dysregulation and clinical features. In this study, we explore the role of the endogenous ACOD1/itaconate pathway in the development of TLR7-induced lupus (imiquimod [IMQ] model). We found that, in vitro, ACOD1 was induced in mouse bone marrow-derived macrophages and human monocyte-derived macrophages following TLR7 stimulation. This induction was partially dependent on type I IFN receptor signaling and on specific intracellular pathways. In the IMQ-induced mouse model of lupus, ACOD1 knockout (Acod1-/-) displayed disruptions of the splenic architecture, increased serum levels of anti-dsDNA and proinflammatory cytokines, and enhanced kidney immune complex deposition and proteinuria, when compared with the IMQ-treated wild-type mice. Consistent with these results, Acod1-/- bone marrow-derived macrophages treated in vitro with IMQ showed higher proinflammatory features. Furthermore, itaconate serum levels in systemic lupus erythematosus patients were decreased compared with healthy individuals, in association with disease activity and specific perturbed cardiometabolic parameters. These findings suggest that the ACOD1/itaconate pathway plays important immunomodulatory and vasculoprotective roles in systemic lupus erythematosus, supporting the potential therapeutic role of itaconate analogs in autoimmune diseases.


Asunto(s)
Carboxiliasas , Lupus Eritematoso Sistémico , Macrófagos , Ratones Noqueados , Succinatos , Animales , Lupus Eritematoso Sistémico/inmunología , Ratones , Humanos , Femenino , Macrófagos/inmunología , Succinatos/farmacología , Enfermedades Cardiovasculares/inmunología , Biomarcadores , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Adulto , Masculino , Modelos Animales de Enfermedad , Persona de Mediana Edad , Citocinas/metabolismo , Receptor Toll-Like 7/metabolismo , Hidroliasas
2.
medRxiv ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38605883

RESUMEN

Objective: The Krebs cycle enzyme Aconitate Decarboxylase 1 (ACOD1) mediates itaconate synthesis in myeloid cells.. Previously, we reported that administration of 4-octyl itaconate abrogated lupus phenotype in mice. Here, we explore the role of the endogenous ACOD1/itaconate pathway in the development of murine lupus as well as their relevance in premature cardiovascular damage in SLE. Methods: We characterized Acod1 protein expression in bone marrow-derived macrophages and human monocyte-derived macrophages, following a TLR7 agonist (imiquimod, IMQ). Wild type and Acod1-/- mice were exposed to topical IMQ for 5 weeks to induce an SLE phenotype and immune dysregulation was quantified. Itaconate serum levels were quantified in SLE patients and associated to cardiometabolic parameters and disease activity. Results: ACOD1 was induced in mouse bone marrow-derived macrophages (BMDM) and human monocyte-derived macrophages following in vitro TLR7 stimulation. This induction was partially dependent on type I Interferon receptor signaling and specific intracellular pathways. In the IMQ-induced mouse model of lupus, ACOD1 knockout (Acod1-/-) displayed disruptions of the splenic architecture, increased serum anti-dsDNA and proinflammatory cytokine levels, enhanced kidney immune complex deposition and proteinuria, when compared to the IMQ-treated WT mice. Consistent with these results, Acod1-/- BMDM exposed to IMQ showed higher proinflammatory features in vitro. Itaconate levels were decreased in SLE serum compared to healthy control sera, in association with specific perturbed cardiometabolic parameters and subclinical vascular disease. Conclusion: These findings suggest that the ACOD1/itaconate pathway plays important immunomodulatory and vasculoprotective roles in SLE, supporting the potential therapeutic role of itaconate analogs in autoimmune diseases.

3.
PLoS Biol ; 21(4): e3002084, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37098006

RESUMEN

Systemic autoimmune diseases are characteristically associated with aberrant autoreactive innate and adaptive immune responses that lead to tissue damage and increased morbidity and mortality. Autoimmunity has been linked to alterations in the metabolic functions of immune cells (immunometabolism) and, more specifically, to mitochondrial dysfunction. Much has been written about immunometabolism in autoimmunity in general, so this Essay focuses on recent research into the role of mitochondrial dysfunction in the dysregulation of innate and adaptive immunity that is characteristic of systemic autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Enhancing the understanding of mitochondrial dysregulation in autoimmunity will hopefully contribute to accelerating the development of immunomodulatory treatments for these challenging diseases.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Humanos , Autoinmunidad , Sistema Inmunológico
4.
Arthritis Rheumatol ; 75(1): 143-144, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35969518
5.
Arthritis Rheumatol ; 74(12): 1971-1983, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35791960

RESUMEN

OBJECTIVE: Itaconic acid, a Krebs cycle-derived immunometabolite, is synthesized by myeloid cells in response to danger signals to control inflammasome activation, type I interferon (IFN) responses, and oxidative stress. As these pathways are dysregulated in systemic lupus erythematosus (SLE), we investigated the role of an itaconic acid derivative in the treatment of established murine lupus. METHODS: Female (NZW × NZB)F1 lupus-prone mice were administered 4-octyl itaconate (4-OI) or vehicle starting after clinical onset of disease (30 weeks of age) for 4 weeks (n = 10 mice /group). At 34 weeks of age (peak disease activity), animals were euthanized, organs and serum were collected, and clinical, metabolic, and immunologic parameters were evaluated. RESULTS: Proteinuria, kidney immune complex deposition, renal scores of severity and inflammation, and anti-RNP autoantibodies were significantly reduced in the 4-OI treatment group compared to the vehicle group. Splenomegaly decreased in the 4-OI group compared to vehicle, with decreases in activation markers in innate and adaptive immune cells, increases in CD8+ T cell numbers, and inhibition of JAK1 activation. Gene expression analysis in splenocytes showed significant decreases in type I IFN and proinflammatory cytokine genes and increased Treg cell-associated markers in the 4-OI group compared to the vehicle group. In human control and lupus myeloid cells, 4-OI in vitro treatment decreased proinflammatory responses and B cell responses. CONCLUSIONS: These results support targeting immunometabolism as a potentially viable approach in autoimmune disease treatment, with 4-OI displaying beneficial roles attenuating immune dysregulation and organ damage in lupus.


Asunto(s)
Lupus Eritematoso Sistémico , Ratones , Femenino , Humanos , Animales , Recién Nacido , Ratones Endogámicos NZB , Modelos Animales de Enfermedad , Lupus Eritematoso Sistémico/tratamiento farmacológico , Anticuerpos Antinucleares
6.
J Clin Invest ; 132(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35025762

RESUMEN

BACKGROUNDFasting and NAD+-boosting compounds, including NAD+ precursor nicotinamide riboside (NR), confer antiinflammatory effects. However, the underlying mechanisms and therapeutic potential are incompletely defined.METHODSWe explored the underlying biology in myeloid cells from healthy volunteers following in vivo placebo or NR administration and subsequently tested the findings in vitro in monocytes extracted from patients with systemic lupus erythematosus (SLE).RESULTSRNA-Seq of unstimulated and LPS-activated monocytes implicated NR in the regulation of autophagy and type I IFN signaling. In primary monocytes, NR blunted LPS-induced IFN-ß production, and genetic or pharmacological disruption of autophagy phenocopied this effect. Given that NAD+ is a coenzyme in oxidoreductive reactions, metabolomics was performed and identified that NR increased the inosine level. Inosine supplementation similarly blunted autophagy and IFN-ß release. Finally, because SLE exhibits type I IFN dysregulation, we assessed the NR effect on monocytes from patients with SLE and found that NR reduced autophagy and IFN-ß release.CONCLUSIONWe conclude that NR, in an NAD+-dependent manner and in part via inosine signaling, mediated suppression of autophagy and attenuated type I IFN in myeloid cells, and we identified NR as a potential adjunct for SLE management.TRIAL REGISTRATIONClinicalTrials.gov registration numbers NCT02812238, NCT00001846, and NCT00001372.FUNDINGThis work was supported by the NHLBI and NIAMS Intramural Research divisions.


Asunto(s)
Lupus Eritematoso Sistémico , NAD , Estudios Clínicos como Asunto , Humanos , Inosina , Interferón beta , Lipopolisacáridos , Monocitos , Niacinamida , Receptor Toll-Like 4
7.
Arthritis Rheumatol ; 73(12): 2282-2292, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33983685

RESUMEN

OBJECTIVE: Neutrophil extracellular traps (NETs) are extracellular lattices composed of nucleic material bound to neutrophil granule proteins. NETs may play pathogenic roles in the development and severity of autoimmune diseases such as systemic lupus erythematosus (SLE), at least in part, through induction of type I interferon (IFN) responses via externalization of oxidized immunostimulatory DNA. A distinct subset of SLE proinflammatory neutrophils (low-density granulocytes [LDGs]) displays enhanced ability to form proinflammatory NETs that damage the vasculature. We undertook this study to assess whether NET-bound RNA can contribute to inflammatory responses in endothelial cells (ECs) and the pathways that mediate this effect. METHODS: Expression of newly synthesized and total RNA was quantified in NETs from healthy controls and lupus patients. The ability of ECs to take up NET-bound RNA and downstream induction of type I IFN responses were quantified. RNAs present in NETs were sequenced and specific small RNAs were tested for induction of endothelial type I IFN pathways. RESULTS: NETs extruded RNA that was internalized by ECs, and this was enhanced when NET-bound nucleic acids were oxidized, particularly in lupus LDG-derived NETs. Internalization of NET-bound RNA by ECs was dependent on endosomal Toll-like receptors (TLRs) and the actin cytoskeleton and induced type I IFN-stimulated genes (ISGs). This ISG induction was dependent on NET-associated microRNA let-7b, a small RNA expressed at higher levels in LDG-derived NETs, which acted as a TLR-7 agonist. CONCLUSION: These findings highlight underappreciated roles for small RNAs externalized in NETs in the induction of proinflammatory responses in vascular cells, with implications for lupus vasculopathy.


Asunto(s)
Células Endoteliales/metabolismo , Inflamación/metabolismo , Lupus Eritematoso Sistémico/metabolismo , Aorta/metabolismo , Línea Celular , Trampas Extracelulares , Humanos , MicroARNs/metabolismo , Neutrófilos/metabolismo
8.
Front Immunol ; 11: 554725, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072095

RESUMEN

Systemic Lupus Erythematosus (SLE) is a chronic inflammatory autoimmune disease in which type I interferons (IFN) play a key role. The IFN response can be triggered when oxidized DNA engages the cytosolic DNA sensing platform cGAS-STING, but the repair mechanisms that modulate this process and govern disease progression are unclear. To gain insight into this biology, we interrogated the role of oxyguanine glycosylase 1 (OGG1), which repairs oxidized guanine 8-Oxo-2'-deoxyguanosine (8-OH-dG), in the pristane-induced mouse model of SLE. Ogg1-/- mice showed increased influx of Ly6Chi monocytes into the peritoneal cavity and enhanced IFN-driven gene expression in response to short-term exposure to pristane. Loss of Ogg1 was associated with increased auto-antibodies (anti-dsDNA and anti-RNP), higher total IgG, and expression of interferon stimulated genes (ISG) to longer exposure to pristane, accompanied by aggravated skin pathology such as hair loss, thicker epidermis, and increased deposition of IgG in skin lesions. Supporting a role for type I IFNs in this model, skin lesions of Ogg1-/- mice had significantly higher expression of type I IFN genes (Isg15, Irf9, and Ifnb). In keeping with loss of Ogg1 resulting in dysregulated IFN responses, enhanced basal and cGAMP-dependent Ifnb expression was observed in BMDMs from Ogg1-/- mice. Use of the STING inhibitor, H151, reduced both basal and cGAMP-driven increases, indicating that OGG1 regulates Ifnb expression through the cGAS-STING pathway. Finally, in support for a role for OGG1 in the pathology of cutaneous disease, reduced OGG1 expression in monocytes associated with skin involvement in SLE patients and the expression of OGG1 was significantly lower in lesional skin compared with non-lesional skin in patients with Discoid Lupus. Taken together, these data support an important role for OGG1 in protecting against IFN production and SLE skin disease.


Asunto(s)
Daño del ADN/inmunología , Lupus Eritematoso Cutáneo/inmunología , Lupus Eritematoso Sistémico/inmunología , Piel/inmunología , Terpenos/efectos adversos , Animales , ADN Glicosilasas/deficiencia , ADN Glicosilasas/inmunología , Modelos Animales de Enfermedad , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Lupus Eritematoso Cutáneo/inducido químicamente , Lupus Eritematoso Cutáneo/genética , Lupus Eritematoso Cutáneo/patología , Lupus Eritematoso Sistémico/inducido químicamente , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/patología , Ratones , Ratones Noqueados , Monocitos/inmunología , Monocitos/patología , Oxidación-Reducción/efectos de los fármacos , Piel/patología , Terpenos/farmacología
9.
Proc Natl Acad Sci U S A ; 117(28): 16481-16491, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32601182

RESUMEN

Differences between female and male immunity may contribute to variations in response to infections and predisposition to autoimmunity. We previously reported that neutrophils from reproductive-age males are more immature and less activated than their female counterparts. To further characterize the mechanisms that drive differential neutrophil phenotypes, we performed RNA sequencing on circulating neutrophils from healthy adult females and males. Female neutrophils displayed significant up-regulation of type I IFN (IFN)-stimulated genes (ISGs). Single-cell RNA-sequencing analysis indicated that these differences are neutrophil specific, driven by a distinct neutrophil subset and related to maturation status. Neutrophil hyperresponsiveness to type I IFNs promoted enhanced responses to Toll-like receptor agonists. Neutrophils from young adult males had significantly increased mitochondrial metabolism compared to those from females and this was modulated by estradiol. Assessment of ISGs and neutrophil maturation genes in Klinefelter syndrome (47, XXY) males and in prepubescent children supported that differences in neutrophil phenotype between adult male and female neutrophils are hormonally driven and not explained by X chromosome gene dosage. Our results indicate that there are distinct sex differences in neutrophil biology related to responses to type I IFNs, immunometabolism, and maturation status that may have prominent functional and pathogenic implications.


Asunto(s)
Interferón Tipo I/inmunología , Neutrófilos/inmunología , Adulto , Femenino , Humanos , Inmunidad Innata , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Síndrome de Klinefelter/genética , Síndrome de Klinefelter/inmunología , Síndrome de Klinefelter/metabolismo , Masculino , Factores Sexuales , Adulto Joven
10.
Arthritis Rheumatol ; 72(12): 2118-2129, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32692482

RESUMEN

OBJECTIVE: Gasdermin D (GSDMD) is the key executioner of an inflammatory cell death mechanism known as pyroptosis. Recent reports have also implicated GSDMD in other mechanisms of cell death, including apoptosis, necroptosis, and NETosis. Given the role of dysregulated cell death in autoimmune syndromes such as systemic lupus erythematosus (SLE), this study was undertaken in a murine lupus model to investigate whether GSDMD plays a pathogenic role in systemic autoimmunity by promoting inflammatory cell death, leading to increased generation of nuclear autoantigens and autoantibodies. METHODS: An imiquimod-induced model of SLE was tested in GSDMD-/- mice (n = 30), with wild-type (WT) mice as controls (n = 34), on a C57BL/6 background. At the time of euthanasia, the mice were examined for serum autoantibodies, immune complex deposition, organ inflammation, immune dysregulation, and type I interferon responses. A model of pristane-induced lung injury in GSDMD-/- mice (n = 7), with WT mice as controls (n = 10), was used to confirm the pulmonary phenotype. Regulation of various mechanisms of cell death by GSDMD was investigated in the mice. RESULTS: Unexpectedly, GSDMD-/- mice developed enhanced mortality, more severe renal and pulmonary inflammation, and exacerbated autoantibody production in response to imiquimod. Pulmonary involvement was also more severe in the absence of GSDMD in mice with pristane-induced lung injury. Compared to WT mice, lack of GSDMD was associated with increased levels of circulating nuclear autoantigens (P < 0.01), anti-double-stranded DNA autoantibodies (P < 0.01), tissue immune complex deposition (P < 0.05), expansion of myeloid cell subsets (P < 0.05), and enhanced B cell activation and plasma cell differentiation (P = 0.001). Moreover, in the absence of GSDMD, enhanced autoantigen generation was associated with increased local induction of cell death in vivo. CONCLUSION: GSDMD negatively regulates autoantigen generation and immune dysregulation in response to tissue injury and may play previously unappreciated protective roles in systemic autoimmunity.


Asunto(s)
Muerte Celular/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lupus Eritematoso Sistémico/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Animales , Autoanticuerpos/sangre , Autoinmunidad , Diferenciación Celular/fisiología , ADN/inmunología , Modelos Animales de Enfermedad , Imiquimod , Inflamación/genética , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Lupus Eritematoso Sistémico/inducido químicamente , Lupus Eritematoso Sistémico/genética , Ratones , Ratones Noqueados , Proteínas de Unión a Fosfato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA