Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 93(19)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31315994

RESUMEN

As many tumor cells synthetize vascular endothelial growth factors (VEGF) that promote neo-vascularization and metastasis, frontline cancer therapies often administer anti-VEGF (α-VEGF) antibodies. To target the oncolytic parvovirus minute virus of mice (MVM) to the tumor vasculature, we studied the functional tolerance, evasion of neutralization, and induction of α-VEGF antibodies of chimeric viruses in which the footprint of a neutralizing monoclonal antibody within the 3-fold capsid spike was replaced by VEGF-blocking peptides: P6L (PQPRPL) and A7R (ATWLPPR). Both peptides allowed viral genome replication and nuclear translocation of chimeric capsid subunits. MVM-P6L efficiently propagated in culture, exposing the heterologous peptide on the capsid surface, and evaded neutralization by the anti-spike monoclonal antibody. In contrast, MVM-A7R yielded low infectious titers and was poorly recognized by an α-A7R monoclonal antibody. MVM-A7R showed a deficient assembly pattern, suggesting that A7R impaired a transitional configuration that the subunits must undergo in the 3-fold axis to close up the capsid shell. The MVM-A7R chimeric virus consistently evolved in culture into a mutant carrying the P6Q amino acid substitution within the A7R sequence, which restored normal capsid assembly and infectivity. Consistent with this finding, anti-native VEGF antibodies were induced in mice by a single injection of MVM-A7R empty capsids, but not by MVM-A7R virions. This fundamental study provides insights to endow an infectious parvovirus with immune antineovascularization and evasion capacities by replacing an antibody footprint in the capsid 3-fold axis with VEGF-blocking peptides, and it also illustrates the evolutionary capacity of single-stranded DNA (ssDNA) viruses to overcome engineered capsid structural restrictions.IMPORTANCE Targeting the VEGF signaling required for neovascularization by vaccination with chimeric capsids of oncolytic viruses may boost therapy for solid tumors. VEGF-blocking peptides (VEbp) engineered in the capsid 3-fold axis endowed the infectious parvovirus MVM with the ability to induce α-VEGF antibodies without adjuvant and to evade neutralization by MVM-specific antibodies. However, these properties may be compromised by structural restraints that the capsid imposes on the peptide configuration and by misassembly caused by the heterologous peptides. Significantly, chimeric MVM-VEbp resolved the structural restrictions by selecting mutations within the engineered peptides that restored efficient capsid assembly. These data show the promise of antineovascularization vaccines using chimeric VEbp-icosahedral capsids of oncolytic viruses but also raise safety concerns regarding the genetic stability of manipulated infectious parvoviruses in cancer and gene therapies.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/metabolismo , Virus Diminuto del Ratón/inmunología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/genética , Proteínas de la Cápside/genética , Ratones Endogámicos BALB C , Virus Diminuto del Ratón/genética , Virus Diminuto del Ratón/crecimiento & desarrollo , Virus Oncolíticos/genética , Virus Oncolíticos/crecimiento & desarrollo , Virus Oncolíticos/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Carga Viral , Ensamble de Virus , Acoplamiento Viral , Internalización del Virus
2.
Science ; 362(6412): 351-356, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30337411

RESUMEN

Host injury triggers feedback mechanisms that limit tissue damage. Conventional type 1 dendritic cells (cDC1s) express dendritic cell natural killer lectin group receptor-1 (DNGR-1), encoded by the gene Clec9a, which senses tissue damage and favors cross-presentation of dead-cell material to CD8+ T cells. Here we find that DNGR-1 additionally reduces host-damaging inflammatory responses induced by sterile and infectious tissue injury in mice. DNGR-1 deficiency leads to exacerbated caerulein-induced necrotizing pancreatitis and increased pathology during systemic Candida albicans infection without affecting fungal burden. This effect is B and T cell-independent and attributable to increased neutrophilia in DNGR-1-deficient settings. Mechanistically, DNGR-1 engagement activates SHP-1 and inhibits MIP-2 (encoded by Cxcl2) production by cDC1s during Candida infection. This consequently restrains neutrophil recruitment and promotes disease tolerance. Thus, DNGR-1-mediated sensing of injury by cDC1s serves as a rheostat for the control of tissue damage, innate immunity, and immunopathology.


Asunto(s)
Candida albicans/inmunología , Candidiasis/patología , Células Dendríticas/inmunología , Lectinas Tipo C/fisiología , Infiltración Neutrófila/inmunología , Páncreas/patología , Pancreatitis Aguda Necrotizante/patología , Receptores Inmunológicos/fisiología , Animales , Lectinas Tipo C/genética , Ratones , Ratones Mutantes , Necrosis , Infiltración Neutrófila/genética , Páncreas/inmunología , Páncreas/microbiología , Pancreatitis Aguda Necrotizante/microbiología , Receptores Inmunológicos/genética
3.
J Immunol ; 195(9): 4466-4478, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26416276

RESUMEN

Dectin-1 (Clec7a) is a paradigmatic C-type lectin receptor that binds Syk through a hemITAM motif and couples sensing of pathogens such as fungi to induction of innate responses. Dectin-1 engagement triggers a plethora of activating events, but little is known about the modulation of such pathways. Trying to define a more precise picture of early Dectin-1 signaling, we explored the interactome of the intracellular tail of the receptor in mouse dendritic cells. We found unexpected binding of SHIP-1 phosphatase to the phosphorylated hemITAM. SHIP-1 colocalized with Dectin-1 during phagocytosis of zymosan in a hemITAM-dependent fashion. Moreover, endogenous SHIP-1 relocated to live or heat-killed Candida albicans-containing phagosomes in a Dectin-1-dependent manner in GM-CSF-derived bone marrow cells (GM-BM). However, SHIP-1 absence in GM-BM did not affect activation of MAPK or production of cytokines and readouts dependent on NF-κB and NFAT. Notably, ROS production was enhanced in SHIP-1-deficient GM-BM treated with heat-killed C. albicans, live C. albicans, or the specific Dectin-1 agonists curdlan or whole glucan particles. This increased oxidative burst was dependent on Dectin-1, Syk, PI3K, phosphoinositide-dependent protein kinase 1, and NADPH oxidase. GM-BM from CD11c∆SHIP-1 mice also showed increased killing activity against live C. albicans that was dependent on Dectin-1, Syk, and NADPH oxidase. These results illustrate the complexity of myeloid C-type lectin receptor signaling, and how an activating hemITAM can also couple to intracellular inositol phosphatases to modulate selected functional responses and tightly regulate processes such as ROS production that could be deleterious to the host.


Asunto(s)
Secuencias de Aminoácidos/inmunología , Candida albicans/inmunología , Células Dendríticas/inmunología , Lectinas Tipo C/inmunología , Monoéster Fosfórico Hidrolasas/inmunología , Especies Reactivas de Oxígeno/inmunología , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Animales , Western Blotting , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/microbiología , Candida albicans/fisiología , Células Dendríticas/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Interacciones Huésped-Patógeno/inmunología , Inositol Polifosfato 5-Fosfatasas , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones Noqueados , Microscopía Confocal , Datos de Secuencia Molecular , FN-kappa B/inmunología , FN-kappa B/metabolismo , Factores de Transcripción NFATC/inmunología , Factores de Transcripción NFATC/metabolismo , Fagocitosis/inmunología , Fagosomas/inmunología , Fagosomas/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Unión Proteica/inmunología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/inmunología
4.
J Clin Invest ; 122(5): 1628-43, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22505455

RESUMEN

In order to prime T cells, DCs integrate signals emanating directly from pathogens and from their noxious action on the host. DNGR-1 (CLEC9A) is a DC-restricted receptor that detects dead cells. Therefore, we investigated the possibility that DNGR-1 affects immunity to cytopathic viruses. DNGR-1 was essential for cross-presentation of dying vaccinia virus-infected (VACV-infected) cells to CD8(+) T cells in vitro. Following injection of VACV or VACV-infected cells into mice, DNGR-1 detected the ligand in dying infected cells and mediated cross-priming of anti-VACV CD8(+) T cells. Loss of DNGR-1 impaired the CD8+ cytotoxic response to VACV, especially against those virus strains that are most dependent on cross-presentation. The decrease in total anti-VACV CTL activity was associated with a profound increase in viral load and delayed resolution of the primary lesion. In addition, lack of DNGR-1 markedly diminished protection from infection induced by vaccination with the modified vaccinia Ankara (MVA) strain. DNGR-1 thus contributes to anti-VACV immunity, following both primary infection and vaccination. The non-redundant ability of DNGR-1 to regulate cross-presentation of viral antigens suggests that this form of regulation of antiviral immunity could be exploited for vaccination.


Asunto(s)
Reactividad Cruzada , Células Dendríticas/metabolismo , Lectinas Tipo C/fisiología , Receptores Inmunológicos/fisiología , Virus Vaccinia/inmunología , Vaccinia/inmunología , Inmunidad Adaptativa , Animales , Presentación de Antígeno , Antígenos Virales/inmunología , Antígenos Virales/metabolismo , Apoptosis , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Células Cultivadas , Células Dendríticas/inmunología , Técnicas de Inactivación de Genes , Interferón gamma/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lisosomas/metabolismo , Lisosomas/virología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Necrosis/virología , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Quinasa Syk , Vaccinia/patología , Virus Vaccinia/fisiología , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...