Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
NPJ Regen Med ; 3: 18, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30323949

RESUMEN

Despite the regenerative capacity of muscle, tissue volume is not restored after volumetric muscle loss (VML), perhaps due to a loss-of-structural extracellular matrix. We recently demonstrated the structural and functional restoration of muscle tissue in a mouse model of VML using an engineered "bioconstruct," comprising an extracellular matrix scaffold (decellularized muscle), muscle stem cells (MuSCs), and muscle-resident cells (MRCs). To test the ability of the cell-based bioconstruct to restore whole-muscle biomechanics, we measured biomechanical parameters in uninjured muscles, muscles injured to produce VML lesions, and in muscles that were injured and then treated by implanting either the scaffolds alone or with bioconstructs containing the scaffolds, MuSCs, and MRCs. We measured the active and passive forces over a range of lengths, viscoelastic force relaxation, optimal length, and twitch dynamics. Injured muscles showed a narrowed length-tension curve or lower force over a narrower range of muscle lengths, and increased passive force. When treated with bioconstructs, but not with scaffolds alone, injured muscles showed active and passive length-tension relationships that were not different from uninjured muscles. Moreover, injured muscles treated with bioconstructs exhibited reduced fibrosis compared to injured muscles either untreated or treated with scaffolds alone. The cell-based bioconstruct is a promising treatment approach for future translational efforts to restore whole-muscle biomechanics in muscles with VML lesions.

2.
Cell Stem Cell ; 22(2): 177-190.e7, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29395054

RESUMEN

The development of cell therapy for repairing damaged or diseased skeletal muscle has been hindered by the inability to significantly expand immature, transplantable myogenic stem cells (MuSCs) in culture. To overcome this limitation, a deeper understanding of the mechanisms regulating the transition between activated, proliferating MuSCs and differentiation-primed, poorly engrafting progenitors is needed. Here, we show that methyltransferase Setd7 facilitates such transition by regulating the nuclear accumulation of ß-catenin in proliferating MuSCs. Genetic or pharmacological inhibition of Setd7 promotes in vitro expansion of MuSCs and increases the yield of primary myogenic cell cultures. Upon transplantation, both mouse and human MuSCs expanded with a Setd7 small-molecule inhibitor are better able to repopulate the satellite cell niche, and treated mouse MuSCs show enhanced therapeutic potential in preclinical models of muscular dystrophy. Thus, Setd7 inhibition may help bypass a key obstacle in the translation of cell therapy for muscle disease.


Asunto(s)
Desarrollo de Músculos , Proteína Metiltransferasas/antagonistas & inhibidores , Trasplante de Células Madre , Células Madre/citología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Linaje de la Célula/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Autorrenovación de las Células/efectos de los fármacos , Células Cultivadas , Eliminación de Gen , N-Metiltransferasa de Histona-Lisina , Ratones , Músculo Esquelético/fisiología , Proteína MioD/metabolismo , Unión Proteica/efectos de los fármacos , Proteína Metiltransferasas/metabolismo , Pirrolidinas/farmacología , Regeneración/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Sulfonamidas/farmacología , Tetrahidroisoquinolinas/farmacología , beta Catenina/metabolismo
3.
Nat Commun ; 8: 15613, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28631758

RESUMEN

Volumetric muscle loss (VML) is associated with loss of skeletal muscle function, and current treatments show limited efficacy. Here we show that bioconstructs suffused with genetically-labelled muscle stem cells (MuSCs) and other muscle resident cells (MRCs) are effective to treat VML injuries in mice. Imaging of bioconstructs implanted in damaged muscles indicates MuSCs survival and growth, and ex vivo analyses show force restoration of treated muscles. Histological analysis highlights myofibre formation, neovascularisation, but insufficient innervation. Both innervation and in vivo force production are enhanced when implantation of bioconstructs is followed by an exercise regimen. Significant improvements are also observed when bioconstructs are used to treat chronic VML injury models. Finally, we demonstrate that bioconstructs made with human MuSCs and MRCs can generate functional muscle tissue in our VML model. These data suggest that stem cell-based therapies aimed to engineer tissue in vivo may be effective to treat acute and chronic VML.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Ejercicio Físico/fisiología , Músculo Esquelético/lesiones , Músculo Esquelético/trasplante , Trasplante de Células Madre/métodos , Ingeniería de Tejidos/métodos , Anciano , Animales , Reactores Biológicos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Persona de Mediana Edad , Músculo Esquelético/patología , Regeneración , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA