Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arch Toxicol ; 93(3): 763-773, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30701286

RESUMEN

As a widespread industrial chemical, formaldehyde carcinogenicity has been highly controversial. Meanwhile, formaldehyde is an essential metabolite in all living cells. Previously, we have demonstrated exogenous formaldehyde causes DNA adducts in a nonlinear manner between 0.7 and 15.2 ppm using [13CD2]-formaldehyde for exposure coupled with the use of sensitive mass spectrometry. However, the responses from exposure to low doses of formaldehyde are still unknown. In this study, rats were exposed to 1, 30, and 300 ppb [13CD2]-formaldehyde for 28 days (6 h/day) by nose-only inhalation, followed by measuring DNA mono-adduct (N2-HOMe-dG) and DNA-protein crosslinks (dG-Me-Cys) as formaldehyde specific biomarkers. Both exogenous and endogenous DNA mono-adducts and dG-Me-Cys were examined with ultrasensitive nano-liquid chromatography-tandem mass spectrometry. Our data clearly show that endogenous adducts are present in all tissues analyzed, but exogenous adducts were not detectable in any tissue samples, including the most susceptible nasal epithelium. Moreover, formaldehyde exposure at 1, 30 and 300 ppb did not alter the levels of endogenous formaldehyde-induced DNA adducts or DNA-protein crosslinks. The novel findings from this study provide new data for risk assessment of exposure to low doses of formaldehyde.


Asunto(s)
Carcinógenos/toxicidad , Formaldehído/toxicidad , Animales , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Aductos de ADN , Relación Dosis-Respuesta a Droga , Exposición por Inhalación , Ratas , Espectrometría de Masas en Tándem , Pruebas de Toxicidad
2.
Environ Sci Process Impacts ; 20(11): 1524-1536, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30259953

RESUMEN

Acid-catalyzed multiphase chemistry of isoprene epoxydiols (IEPOX) on sulfate aerosol produces substantial amounts of water-soluble secondary organic aerosol (SOA) constituents, including 2-methyltetrols, methyltetrol sulfates, and oligomers thereof in atmospheric fine particulate matter (PM2.5). These constituents have commonly been measured by gas chromatography interfaced to electron ionization mass spectrometry (GC/EI-MS) with prior derivatization or by reverse-phase liquid chromatography interfaced to electrospray ionization high-resolution mass spectrometry (RPLC/ESI-HR-MS). However, both techniques have limitations in explicitly resolving and quantifying polar SOA constituents due either to thermal degradation or poor separation. With authentic 2-methyltetrol and methyltetrol sulfate standards synthesized in-house, we developed a hydrophilic interaction liquid chromatography (HILIC)/ESI-HR-quadrupole time-of-flight mass spectrometry (QTOFMS) protocol that can chromatographically resolve and accurately measure the major IEPOX-derived SOA constituents in both laboratory-generated SOA and atmospheric PM2.5. 2-Methyltetrols were simultaneously resolved along with 4-6 diastereomers of methyltetrol sulfate, allowing efficient quantification of both major classes of SOA constituents by a single non-thermal analytical method. The sum of 2-methyltetrols and methyltetrol sulfates accounted for approximately 92%, 62%, and 21% of the laboratory-generated ß-IEPOX aerosol mass, laboratory-generated δ-IEPOX aerosol mass, and organic aerosol mass in the southeastern U.S., respectively, where the mass concentration of methyltetrol sulfates was 171-271% the mass concentration of methyltetrol. Mass concentrations of methyltetrol sulfates were 0.39 and 2.33 µg m-3 in a PM2.5 sample collected from central Amazonia and the southeastern U.S., respectively. The improved resolution clearly reveals isomeric patterns specific to methyltetrol sulfates from acid-catalyzed multiphase chemistry of ß- and δ-IEPOX. We also demonstrate that conventional GC/EI-MS analyses overestimate 2-methyltetrols by up to 188%, resulting (in part) from the thermal degradation of methyltetrol sulfates. Lastly, C5-alkene triols and 3-methyltetrahydrofuran-3,4-diols are found to be largely GC/EI-MS artifacts formed from thermal degradation of 2-methyltetrol sulfates and 3-methyletrol sulfates, respectively, and are not detected with HILIC/ESI-HR-QTOFMS.


Asunto(s)
Aerosoles/química , Butadienos/química , Cromatografía Liquida/métodos , Compuestos Epoxi/química , Hemiterpenos/química , Catálisis , Interacciones Hidrofóbicas e Hidrofílicas , Isomerismo , Material Particulado/química , Sulfatos/química
3.
Cancer Res ; 76(9): 2652-61, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26984759

RESUMEN

DNA-protein crosslinks (DPC) arise from a wide range of endogenous and exogenous chemicals, such as chemotherapeutic drugs and formaldehyde. Importantly, recent identification of aldehydes as endogenous genotoxins in Fanconi anemia has provided new insight into disease causation. Because of their bulky nature, DPCs pose severe threats to genome stability, but previous methods to measure formaldehyde-induced DPCs were incapable of discriminating between endogenous and exogenous sources of chemical. In this study, we developed methods that provide accurate and distinct measurements of both exogenous and endogenous DPCs in a structurally specific manner. We exposed experimental animals to stable isotope-labeled formaldehyde ([(13)CD2]-formaldehyde) by inhalation and performed ultrasensitive mass spectrometry to measure endogenous (unlabeled) and exogenous ((13)CD2-labeled) DPCs. We found that exogenous DPCs readily accumulated in nasal respiratory tissues but were absent in tissues distant to the site of contact. This observation, together with the finding that endogenous formaldehyde-induced DPCs were present in all tissues examined, suggests that endogenous DPCs may be responsible for increased risks of bone marrow toxicity and leukemia. Furthermore, the slow rate of DPC repair provided evidence for the persistence of DPCs. In conclusion, our method for measuring endogenous and exogenous DPCs presents a new perspective for the potential health risks inflicted by endogenous formaldehyde and may inform improved disease prevention and treatment strategies. Cancer Res; 76(9); 2652-61. ©2016 AACR.


Asunto(s)
Reactivos de Enlaces Cruzados/toxicidad , Daño del ADN , Formaldehído/toxicidad , Marcaje Isotópico/métodos , Espectrometría de Masas/métodos , Animales , Ratas
4.
Drug Metab Dispos ; 43(12): 1838-46, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26354949

RESUMEN

UDP-Glucuronosyltransferases (UGTs) conjugate a glucuronyl group from glucuronic acid to a wide range of lipophilic substrates to form a hydrophilic glucuronide conjugate. The glucuronide generally has decreased bioactivity and increased water solubility to facilitate excretion. Glucuronidation represents an important detoxification pathway for both endogenous waste products and xenobiotics, including drugs and harmful industrial chemicals. Two clinically significant families of UGT enzymes are present in mammals: UGT1s and UGT2s. Although the two families are distinct in gene structure, studies using recombinant enzymes have shown considerable overlap in their ability to glucuronidate many substrates, often obscuring the relative importance of the two families in the clearance of particular substrates in vivo. To address this limitation, we have generated a mouse line, termed ΔUgt2, in which the entire Ugt2 gene family, extending over 609 kilobase pairs, is excised. This mouse line provides a means to determine the contributions of the two UGT families in vivo. We demonstrate the utility of these animals by defining for the first time the in vivo contributions of the UGT1 and UGT2 families to glucuronidation of the environmental estrogenic agent bisphenol A (BPA). The highest activity toward this chemical is reported for human and rodent UGT2 enzymes. Surprisingly, our studies using the ΔUgt2 mice demonstrate that, while both UGT1 and UGT2 isoforms can conjugate BPA, clearance is largely dependent on UGT1s.


Asunto(s)
Glucuronosiltransferasa/deficiencia , Glucuronosiltransferasa/genética , Microsomas Hepáticos/metabolismo , Xenobióticos/metabolismo , Animales , Compuestos de Bencidrilo/metabolismo , Compuestos de Bencidrilo/farmacología , Inactivación Metabólica/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Microsomas Hepáticos/efectos de los fármacos , Fenoles/metabolismo , Fenoles/farmacología , Xenobióticos/farmacología
5.
Toxicol Sci ; 146(1): 170-82, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25904104

RESUMEN

Formaldehyde is not only a widely used chemical with well-known carcinogenicity but is also a normal metabolite of living cells. It thus poses unique challenges for understanding risks associated with exposure. N(2-)hydroxymethyl-dG (N(2)-HOMe-dG) is the main formaldehyde-induced DNA mono-adduct, which together with DNA-protein crosslinks (DPCs) and toxicity-induced cell proliferation, play important roles in a mutagenic mode of action for cancer. In this study, N(2)-HOMe-dG was shown to be an excellent biomarker for direct adduction of formaldehyde to DNA and the hydrolysis of DPCs. The use of inhaled [(13)CD2]-formaldehyde exposures of rats and primates coupled with ultrasensitive nano ultra performance liquid chromatography-tandem mass spectrometry permitted accurate determinations of endogenous and exogenous formaldehyde DNA damage. The results show that inhaled formaldehyde only reached rat and monkey noses, but not tissues distant to the site of initial contact. The amounts of exogenous adducts were remarkably lower than those of endogenous adducts in exposed nasal epithelium. Moreover, exogenous adducts accumulated in rat nasal epithelium over the 28-days exposure to reach steady-state concentrations, followed by elimination with a half-life (t1/2) of 7.1 days. Additionally, we examined artifact formation during DNA preparation to ensure the accuracy of nonlabeled N(2)-HOMe-dG measurements. These novel findings provide critical new data for understanding major issues identified by the National Research Council Review of the 2010 Environmental Protection Agency's Draft Integrated Risk Information System Formaldehyde Risk Assessment. They support a data-driven need for reflection on whether risks have been overestimated for inhaled formaldehyde, whereas underappreciating endogenous formaldehyde as the primary source of exposure that results in bone marrow toxicity and leukemia in susceptible humans and rodents deficient in DNA repair.


Asunto(s)
Daño del ADN , ADN/efectos de los fármacos , Formaldehído/toxicidad , Animales , Cromatografía Líquida de Alta Presión , Humanos , Hidrólisis , Ratas , Espectrometría de Masas en Tándem
6.
J Toxicol Environ Health A ; 78(1): 15-31, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25424544

RESUMEN

Trichloroethylene (TCE) is a widely used organic solvent. Although TCE is classified as carcinogenic to humans, substantial gaps remain in our understanding of interindividual variability in TCE metabolism and toxicity, especially in the liver. A hypothesis was tested that amounts of oxidative metabolites of TCE in mouse liver are associated with hepatic-specific toxicity. Oral dosing with TCE was conducted in subacute (600 mg/kg/d; 5 d; 7 inbred mouse strains) and subchronic (100 or 400 mg/kg/d; 1, 2, or 4 wk; 2 inbred mouse strains) designs. The quantitative relationship was evaluated between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P-450-mediated oxidation (trichloroacetic acid [TCA], dichloroacetic acid [DCA], and trichloroethanol) and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione] in serum and liver, and various hepatic toxicity phenotypes. In subacute study, interstrain variability in TCE metabolite amounts was observed in serum and liver. No marked induction of Cyp2e1 protein levels in liver was detected. Serum and hepatic levels of TCA and DCA were correlated with increased transcription of peroxisome proliferator-marker genes Cyp4a10 and Acox1 but not with degree of induction in hepatocellular proliferation. In subchronic study, serum and liver levels of oxidative metabolites gradually decreased over time despite continuous dosing. Hepatic protein levels of CYP2E1, ADH, and ALDH2 were unaffected by treatment with TCE. While the magnitude of induction of peroxisome proliferator-marker genes also declined, hepatocellular proliferation increased. This study offers a unique opportunity to provide a scientific data-driven rationale for some of the major assumptions in human health assessment of TCE.


Asunto(s)
Hígado/efectos de los fármacos , Tricloroetileno/farmacocinética , Tricloroetileno/toxicidad , Administración Oral , Animales , Carcinógenos/farmacocinética , Carcinógenos/toxicidad , Proliferación Celular , Cisteína/análogos & derivados , Cisteína/sangre , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Ácido Dicloroacético/sangre , Relación Dosis-Respuesta a Droga , Etilenclorhidrina/análogos & derivados , Etilenclorhidrina/metabolismo , Expresión Génica , Glutatión/análogos & derivados , Glutatión/sangre , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/citología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Solventes/farmacocinética , Solventes/toxicidad , Ácido Tricloroacético/sangre
7.
J Toxicol Environ Health A ; 78(1): 32-49, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25424545

RESUMEN

Trichloroethylene (TCE) is a well-known environmental and occupational toxicant that is classified as carcinogenic to humans based on the epidemiological evidence of an association with higher risk of renal-cell carcinoma. A number of scientific issues critical for assessing human health risks from TCE remain unresolved, such as the amount of kidney-toxic glutathione conjugation metabolites formed, interspecies and interindividual differences, and the mode of action for kidney carcinogenicity. It was postulated that TCE renal metabolite levels are associated with kidney-specific toxicity. Oral dosing with TCE was conducted in subacute (600 mg/kg/d; 5 d; 7 inbred mouse strains) and subchronic (100 or 400 mg/kg/d; 1, 2, or 4 wk; 2 inbred mouse strains) designs. The quantitative relationship was evaluated between strain-, dose, and time-dependent formation of TCE metabolites from cytochrome P-450-mediated oxidation (trichloroacetic acid [TCA], dichloroacetic acid [DCA], and trichloroethanol) and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione], and various kidney toxicity phenotypes. In subacute study, interstrain differences in renal TCE metabolite levels were observed. In addition, data showed that in several strains kidney-specific effects of TCE included induction of peroxisome proliferator-marker genes Cyp4a10 and Acox1, increased cell proliferation, and expression of KIM-1, a marker of tubular damage and regeneration. In subchronic study, peroxisome proliferator-marker gene induction and renal toxicity diminished while cell proliferative response was elevated in a dose-dependent manner in NZW/LacJ but not C57BL/6J mice. Overall, data demonstrated that renal TCE metabolite levels are associated with kidney-specific toxicity and that these effects are strain dependent.


Asunto(s)
Riñón/efectos de los fármacos , Tricloroetileno/farmacocinética , Tricloroetileno/toxicidad , Animales , Carcinógenos/farmacocinética , Carcinógenos/toxicidad , Proliferación Celular/efectos de los fármacos , Cisteína/análogos & derivados , Cisteína/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Ácido Dicloroacético/metabolismo , Etilenclorhidrina/análogos & derivados , Etilenclorhidrina/metabolismo , Glutatión/análogos & derivados , Glutatión/metabolismo , Receptor Celular 1 del Virus de la Hepatitis A , Riñón/citología , Riñón/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Oxidación-Reducción/efectos de los fármacos , PPAR alfa/genética , PPAR alfa/metabolismo , Ácido Tricloroacético/metabolismo
8.
Chem Res Toxicol ; 27(2): 172-4, 2014 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-24490651

RESUMEN

Large individual differences in susceptibility to arsenic-induced diseases are well-documented and frequently associated with different patterns of arsenic metabolism. In this context, the role of the gut microbiome in directly metabolizing arsenic and triggering systemic responses in diverse organs raises the possibility that gut microbiome phenotypes affect the spectrum of metabolized arsenic species. However, it remains unclear how host genetics and the gut microbiome interact to affect the biotransformation of arsenic. Using an integrated approach combining 16S rRNA gene sequencing and HPLC-ICP-MS arsenic speciation, we demonstrate that IL-10 gene knockout leads to a significant taxonomic change of the gut microbiome, which in turn substantially affects arsenic metabolism.


Asunto(s)
Arsénico/farmacocinética , Contaminantes Ambientales/farmacocinética , Tracto Gastrointestinal/microbiología , Interleucina-10/genética , Microbiota , Animales , Biotransformación , Cromatografía Líquida de Alta Presión , Tracto Gastrointestinal/metabolismo , Espectrometría de Masas , Ratones , Ratones Noqueados , Fenotipo , ARN Ribosómico 16S/genética
9.
Chem Res Toxicol ; 26(12): 1893-903, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24134150

RESUMEN

Exposure to arsenic affects large human populations worldwide and has been associated with a long list of human diseases, including skin, bladder, lung, and liver cancers, diabetes, and cardiovascular disorders. In addition, there are large individual differences in susceptibility to arsenic-induced diseases, which are frequently associated with different patterns of arsenic metabolism. Several underlying mechanisms, such as genetic polymorphisms and epigenetics, have been proposed, as these factors closely impact the individuals' capacity to metabolize arsenic. In this context, the role of the gut microbiome in directly metabolizing arsenic and triggering systemic responses in diverse organs raises the possibility that perturbations of the gut microbial communities affect the spectrum of metabolized arsenic species and subsequent toxicological effects. In this study, we used an animal model with an altered gut microbiome induced by bacterial infection, 16S rRNA gene sequencing, and inductively coupled plasma mass spectrometry-based arsenic speciation to examine the effect of gut microbiome perturbations on the biotransformation of arsenic. Metagenomics sequencing revealed that bacterial infection significantly perturbed the gut microbiome composition in C57BL/6 mice, which in turn resulted in altered spectra of arsenic metabolites in urine, with inorganic arsenic species and methylated and thiolated arsenic being perturbed. These data clearly illustrated that gut microbiome phenotypes significantly affected arsenic metabolic reactions, including reduction, methylation, and thiolation. These findings improve our understanding of how infectious diseases and environmental exposure interact and may also provide novel insight regarding the gut microbiome composition as a new risk factor of individual susceptibility to environmental chemicals.


Asunto(s)
Arsénico/metabolismo , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/microbiología , Helicobacter/fisiología , Animales , Modelos Animales de Enfermedad , Infecciones por Helicobacter/patología , Humanos , Ratones , Ratones Endogámicos C57BL
10.
Toxicol Sci ; 133(1): 1-12, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23425604

RESUMEN

The dose-response relationship for biomarkers of exposure (N(2)-ethylidene-dG adducts) and effect (cell survival and micronucleus formation) was determined across 4.5 orders of magnitude (50nM-2mM) using [(13)C2]-acetaldehyde exposures to human lymphoblastoid TK6 cells for 12h. There was a clear increase in exogenous N (2)-ethylidene-dG formation at exposure concentrations ≥ 1µM, whereas the endogenous adducts remained nearly constant across all exposure concentrations, with an average of 3.0 adducts/10(7) dG. Exogenous adducts were lower than endogenous adducts at concentrations ≤ 10µM and were greater than endogenous adducts at concentrations ≥ 250µM. When the endogenous and exogenous adducts were summed together, statistically significant increases in total adduct formation over the endogenous background occurred at 50µM. Cell survival and micronucleus formation were monitored across the exposure range and statistically significant decreases in cell survival and increases in micronucleus formation occurred at ≥ 1000µM. This research supports the hypothesis that endogenously produced reactive species, including acetaldehyde, are always present and constitute the majority of the observed biological effects following very low exposures to exogenous acetaldehyde. These data can replace default assumptions of linear extrapolation to very low doses of exogenous acetaldehyde for risk prediction.


Asunto(s)
Acetaldehído/toxicidad , Aductos de ADN/análisis , Desoxiguanosina/análogos & derivados , Exposición a Riesgos Ambientales/análisis , Micronúcleos con Defecto Cromosómico/inducido químicamente , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa Mitocondrial , Isótopos de Carbono , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Desoxiguanosina/análisis , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Genotipo , Humanos , Estándares de Referencia , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
11.
Toxicol Appl Pharmacol ; 267(1): 11-5, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23261974

RESUMEN

Epidemiologic evidence has linked chronic exposure to inorganic arsenic (iAs) with an increased prevalence of diabetes mellitus. Laboratory studies have identified several mechanisms by which iAs can impair glucose homeostasis. We have previously shown that micromolar concentrations of arsenite (iAs(III)) or its methylated trivalent metabolites, methylarsonite (MAs(III)) and dimethylarsinite (DMAs(III)), inhibit the insulin-activated signal transduction pathway, resulting in insulin resistance in adipocytes. Our present study examined effects of the trivalent arsenicals on insulin secretion by intact pancreatic islets isolated from C57BL/6 mice. We found that 48-hour exposures to low subtoxic concentrations of iAs(III), MAs(III) or DMAs(III) inhibited glucose-stimulated insulin secretion (GSIS), but not basal insulin secretion. MAs(III) and DMAs(III) were more potent than iAs(III) as GSIS inhibitors with estimated IC(50)≤0.1 µM. The exposures had little or no effects on insulin content of the islets or on insulin expression, suggesting that trivalent arsenicals interfere with mechanisms regulating packaging of the insulin transport vesicles or with translocation of these vesicles to the plasma membrane. Notably, the inhibition of GSIS by iAs(III), MAs(III) or DMAs(III) could be reversed by a 24-hour incubation of the islets in arsenic-free medium. These results suggest that the insulin producing pancreatic ß-cells are among the targets for iAs exposure and that the inhibition of GSIS by low concentrations of the methylated metabolites of iAs may be the key mechanism of iAs-induced diabetes.


Asunto(s)
Arsenicales/farmacología , Glucosa/antagonistas & inhibidores , Glucosa/farmacología , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Animales , Arsenicales/química , Arsenicales/metabolismo , Células Cultivadas , Secreción de Insulina , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL
12.
Am J Pathol ; 177(4): 1936-45, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20813965

RESUMEN

Adiponectin is a hormone that lowers glucose production by increasing liver insulin sensitivity. Insulin blocks the generation of biochemical intermediates for glucose production by inhibiting autophagy. However, autophagy is stimulated by an essential mediator of adiponectin action, AMPK. This deadlock led to our hypothesis that adiponectin inhibits autophagy through a novel mediator. Mass spectrometry revealed a novel protein that we call suppressor of glucose by autophagy (SOGA) in adiponectin-treated hepatoma cells. Adiponectin increased SOGA in hepatocytes, and siRNA knockdown of SOGA blocked adiponectin inhibition of glucose production. Furthermore, knockdown of SOGA increased late autophagosome and lysosome staining and the secretion of valine, an amino acid that cannot be synthesized or metabolized by liver cells, suggesting that SOGA inhibits autophagy. SOGA decreased in response to AICAR, an activator of AMPK, and LY294002, an inhibitor of the insulin signaling intermediate, PI3K. AICAR reduction of SOGA was blocked by adiponectin; however, adiponectin did not increase SOGA during PI3K inhibition, suggesting that adiponectin increases SOGA through the insulin signaling pathway. SOGA contains an internal signal peptide that enables the secretion of a circulating fragment of SOGA, providing a surrogate marker for intracellular SOGA levels. Circulating SOGA increased in parallel with adiponectin and insulin activity in both humans and mice. These results suggest that adiponectin-mediated increases in SOGA contribute to the inhibition of glucose production.


Asunto(s)
Adiponectina/sangre , Adiponectina/farmacología , Glucemia/metabolismo , Hipoglucemiantes/sangre , Insulina/sangre , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hígado/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Adulto , Secuencia de Aminoácidos , Animales , Autofagia , Proteínas Relacionadas con la Autofagia , Clonación Molecular , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Hígado/citología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Obesos , Ratones Transgénicos , Persona de Mediana Edad , Datos de Secuencia Molecular , Fragmentos de Péptidos/inmunología , Conejos , Transducción de Señal , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Adulto Joven
13.
Proteomics Clin Appl ; 2(4): 467-77, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21136851

RESUMEN

Emerging disease modifying therapeutic strategies for Alzheimer's disease (AD) have generated a critical need for biomarkers of early stage disease. Here, we describe the identification and assessment of a number of candidate biomarkers in patients with mild to moderate probable AD. Plasma from 47 probable Alzheimer's patients and 47 matched controls were analysed by proteomics to define a significant number of proteins whose expression appeared to be associated with AD. These were compared to a similar proteomic comparison of a mouse transgenic model of amyloidosis, which showed encouraging overlap with the human data. From these studies a prioritised list of 31 proteins were then analysed by immunoassay and/or functional assay in the same human cohort to verify the changes observed. Eight proteins continued to show significance by either immunoassay or functional assay in the human plasma and these were tested in a further set of 100 probable AD patients and 100 controls from the original cohort. From our data it appeared that two proteins, serpin F1 (pigment epithelium-derived factor) and complement C1 inhibitor are down-regulated in plasma from AD patients.

14.
J Am Soc Mass Spectrom ; 14(9): 971-9, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12954165

RESUMEN

The goal of this work was to evaluate the improvement in proteome coverage of complex protein mixtures gained by analyzing samples using both LC/ESI/MS/MS and LC/MALDI/MS/MS. Parallel analyses of a single sample were accomplished by interfacing a Probot fractionation system with a nanoscale LC system. The Probot was configured to perform a post-column split such that a fraction (20%) of the column effluent was sent for on-line LC/ESI/MS/MS data acquisition, and the majority of the sample (80%) was mixed with a matrix solution and deposited onto the MALDI target plate. The split-flow approach takes advantage of the concentration sensitive nature of ESI and provides sufficient quantity of sample for MALDI/MS/MS. Hybrid quadrupole time-of-flight mass spectrometers were used to acquire LC/ESI/MS/MS data and LC/MALDI/MS/MS data from a tryptic digest of a preparation of mammalian mitochondrial ribosomes. The mass spectrometers were configured to operate in a data dependent acquisition mode in which precursor ions observed in MS survey scans are automatically selected for interrogation by MS/MS. This type of acquisition scheme maximizes the number of peptide fragmentation spectra obtained and is commonly referred to as shotgun analysis. While a significant degree of overlap (63%) was observed between the proteins identified in the LC/ESI/MS/MS and LC/MALDI/MS/MS data sets, both unique peptides and unique proteins were observed by each method. These results demonstrate that improved proteome coverage can be obtained using a combination of these ionization techniques.


Asunto(s)
Proteoma/análisis , Proteómica/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Bovinos , Cromatografía Liquida/métodos , Mitocondrias/química , Proteoma/química , Proteínas Ribosómicas/análisis , Proteínas Ribosómicas/química , Ribosomas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA