Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Commun Biol ; 7(1): 125, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267685

RESUMEN

Marine heatwaves (MHWs) cause disruption to marine ecosystems, deleteriously impacting macroflora and fauna. However, effects on microorganisms are relatively unknown despite ocean temperature being a major determinant of assemblage structure. Using data from thousands of Southern Hemisphere samples, we reveal that during an "unprecedented" 2015/16 Tasman Sea MHW, temperatures approached or surpassed the upper thermal boundary of many endemic taxa. Temperate microbial assemblages underwent a profound transition to niche states aligned with sites over 1000 km equatorward, adapting to higher temperatures and lower nutrient conditions bought on by the MHW. MHW conditions also modulate seasonal patterns of microbial diversity and support novel assemblage compositions. The most significant affects of MHWs on microbial assemblages occurred during warmer months, when temperatures exceeded the upper climatological bounds. Trends in microbial response across several MHWs in different locations suggest these are emergent properties of temperate ocean warming, which may facilitate monitoring, prediction and adaptation efforts.


Asunto(s)
Ecosistema , Rayos Infrarrojos , Nutrientes , Temperatura
2.
Environ Microbiol ; 25(6): 1084-1098, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36700447

RESUMEN

Bacterioplankton communities govern marine productivity and biogeochemical cycling, yet drivers of bacterioplankton assembly remain unclear. Here, we contrast the relative contribution of deterministic processes (environmental factors and biotic interactions) in driving temporal dynamics of bacterioplankton diversity at three different oceanographic time series locations, spanning 15° of latitude, which are each characterized by different environmental conditions and varying degrees of seasonality. Monthly surface samples (5.5 years) were analysed using 16S rRNA amplicon sequencing. The high- and mid-latitude sites of Maria Island and Port Hacking were characterized by high and intermediate levels of environmental heterogeneity, respectively, with both alpha diversity (72%; 24% of total variation) and beta diversity (32%; 30%) patterns within bacterioplankton assemblages explained by day length, ammonium, and mixed layer depth. In contrast, North Stradbroke Island, a sub-tropical location where environmental conditions are less variable, interspecific interactions were of increased importance in structuring bacterioplankton diversity (alpha: 33%; beta: 26%) with environment only contributing 11% and 13% to predicting diversity, respectively. Our results demonstrate that bacterioplankton diversity is the result of both deterministic environmental and biotic processes and that the importance of these different deterministic processes varies, potential in response to environmental heterogeneity.


Asunto(s)
Organismos Acuáticos , Ecosistema , ARN Ribosómico 16S/genética , Plancton/genética
3.
Microorganisms ; 10(2)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35208793

RESUMEN

Diatom communities significantly influence ocean primary productivity and carbon cycling, but their spatial and temporal dynamics are highly heterogeneous and are governed by a complex diverse suite of abiotic and biotic factors. We examined the seasonal and biogeographical dynamics of diatom communities in Australian coastal waters using amplicon sequencing data (18S-16S rRNA gene) derived from a network of oceanographic time-series spanning the Australian continent. We demonstrate that diatom community composition in this region displays significant biogeography, with each site harbouring distinct community structures. Temperature and nutrients were identified as the key environmental contributors to differences in diatom communities at all sites, collectively explaining 21% of the variability observed in diatoms assemblages. However, specific groups of bacteria previously implicated in mutualistic ecological interactions with diatoms (Rhodobacteraceae, Flavobacteriaceae and Alteromonadaceae) also explained a further 4% of the spatial dynamics observed in diatom community structure. We also demonstrate that the two most temperate sites (Port Hacking and Maria Island) exhibited strong seasonality in diatom community and that at these sites, winter diatom communities co-occurred with higher proportion of Alteromonadaceae. In addition, we identified significant co-occurrence between specific diatom and bacterial amplicon sequence variants (ASVs), with members of the Roseobacter and Flavobacteria clades strongly correlated with some of the most abundant diatom genera (Skeletonema, Thalassiosira, and Cylindrotheca). We propose that some of these co-occurrences might be indicative of ecologically important interactions between diatoms and bacteria. Our analyses reveal that in addition to physico-chemical conditions (i.e., temperature, nutrients), the relative abundance of specific groups of bacteria appear to play an important role in shaping the spatial and temporal dynamics of marine diatom communities.

4.
Environ Microbiol ; 24(5): 2449-2466, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35049099

RESUMEN

We investigated the Southern Ocean (SO) prokaryote community structure via zero-radius operational taxonomic unit (zOTU) libraries generated from 16S rRNA gene sequencing of 223 full water column profiles. Samples reveal the prokaryote diversity trend between discrete water masses across multiple depths and latitudes in Indian (71-99°E, summer) and Pacific (170-174°W, autumn-winter) sectors of the SO. At higher taxonomic levels (phylum-family) we observed water masses to harbour distinct communities across both sectors, but observed sectorial variations at lower taxonomic levels (genus-zOTU) and relative abundance shifts for key taxa such as Flavobacteria, SAR324/Marinimicrobia, Nitrosopumilus and Nitrosopelagicus at both epi- and bathy-abyssopelagic water masses. Common surface bacteria were abundant in several deep-water masses and vice-versa suggesting connectivity between surface and deep-water microbial assemblages. Bacteria from same-sector Antarctic Bottom Water samples showed patchy, high beta-diversity which did not correlate well with measured environmental parameters or geographical distance. Unconventional depth distribution patterns were observed for key archaeal groups: Crenarchaeota was found across all depths in the water column and persistent high relative abundances of common epipelagic archaeon Nitrosopelagicus was observed in deep-water masses. Our findings reveal substantial regional variability of SO prokaryote assemblages that we argue should be considered in wide-scale SO ecosystem microbial modelling.


Asunto(s)
Ecosistema , Agua de Mar , Archaea/genética , Bacterias/genética , Biodiversidad , Océanos y Mares , Océano Pacífico , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Agua
5.
ISME Commun ; 2(1): 16, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37938744

RESUMEN

Ecological interactions between marine bacteria and phytoplankton play a pivotal role in governing the ocean's major biogeochemical cycles. Among these, members of the marine Roseobacter Group (MRG) can establish mutualistic relationships with phytoplankton that are, in part, maintained by exchanges of the organosulfur compound, dimethylsulfoniopropionate (DMSP). Yet most of what is known about these interactions has been derived from culture-based laboratory studies. To investigate temporal and spatial co-occurrence patterns between members of the MRG and DMSP-producing phytoplankton we analysed 16S and 18S rRNA gene amplicon sequence variants (ASVs) derived from 5 years of monthly samples from seven environmentally distinct Australian oceanographic time-series. The MRG and DMSP-producer communities often displayed contemporaneous seasonality, which was greater in subtropical and temperate environments compared to tropical environments. The relative abundance of both groups varied latitudinally, displaying a poleward increase, peaking (MRG at 33% of total bacteria, DMSP producers at 42% of eukaryotic phototrophs) during recurrent spring-summer phytoplankton blooms in the most temperate site (Maria Island, Tasmania). Network analysis identified 20,140 significant positive correlations between MRG ASVs and DMSP producers and revealed that MRGs exhibit significantly stronger correlations to high DMSP producers relative to other DMSP-degrading bacteria (Pelagibacter, SAR86 and Actinobacteria). By utilising the power of a continental network of oceanographic time-series, this study provides in situ confirmation of interactions found in laboratory studies and demonstrates that the ecological dynamics of an important group of marine bacteria are shaped by the production of an abundant and biogeochemically significant organosulfur compound.

6.
Sci Total Environ ; 809: 151175, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34699819

RESUMEN

Vertical zonation within estuarine ecosystems can strongly influence microbial diversity and function by regulating competition, predation, and environmental stability. The degree to which microbial communities exhibit horizontal patterns through an estuary has received comparatively less attention. Here, we take a multi-omics ecosurveillance approach to study environmental gradients created by the transition between dominant vegetation types along a near pristine tropical river system (Wenlock River, Far North Queensland, Australia). The study sites included intertidal mudflats fringed by saltmarsh, mangrove or mixed soft substrata habitats. Collected sediments were analyzed for eukaryotes and prokaryotes using small sub-unit (SSU) rRNA gene amplicons to profile the relative taxonomic composition. Central carbon metabolism metabolites and other associated organic polar metabolites were analyzed using established metabolomics-based approaches, coupled with total heavy metals analysis. Eukaryotic taxonomic information was found to be more informative of habitat type. Bacterial taxonomy and community composition also showed habitat-specificity, with phyla Proteobacteria and Cyanobacteria strongly linked to mangroves and saltmarshes, respectively. In contrast, metabolite profiling was critical for understanding the biochemical pathways and expressed functional outputs in these systems that were tied to predicted microbial gene function (16S rRNA). A high degree of metabolic redundancy was observed in the bacterial communities, with the metabolomics data suggesting varying degrees of metabolic criticality based on habitat type. The predicted functions of the bacterial taxa combined with annotated metabolites accounted for the conservative perspective of microbial community redundancy against the putative metabolic pathway impacts in the metabolomics data. Coupling these data demonstrates that habitat-mediated estuarine gradients drive patterns of community diversity and metabolic function and highlights the real redundancy potential of habitat microbiomes. This information is useful as a point of comparison for these sensitive ecosystems and provides a framework for identifying potentially vulnerable or at-risk systems before they are significantly degraded.


Asunto(s)
Cianobacterias , Microbiota , Ecosistema , Sedimentos Geológicos , ARN Ribosómico 16S/genética , Ríos
7.
Sensors (Basel) ; 21(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34640944

RESUMEN

Antimicrobial resistance (AMR) is threatening modern medicine. While the primary cost of AMR is paid in the healthcare domain, the agricultural and environmental domains are also reservoirs of resistant microorganisms and hence perpetual sources of AMR infections in humans. Consequently, the World Health Organisation and other international agencies are calling for surveillance of AMR in all three domains to guide intervention and risk reduction strategies. Technologies for detecting AMR that have been developed for healthcare settings are not immediately transferable to environmental and agricultural settings, and limited dialogue between the domains has hampered opportunities for cross-fertilisation to develop modified or new technologies. In this feature, we discuss the limitations of currently available AMR sensing technologies used in the clinic for sensing in other environments, and what is required to overcome these limitations.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Monitoreo del Ambiente , Humanos , Organización Mundial de la Salud
8.
FEMS Microbiol Ecol ; 97(10)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34498669

RESUMEN

Methane availability in freshwaters is usually associated with spatial-temporal variation in methanogenesis. Unusually, however, natural gas macro-seeps occur along the Condamine River in eastern Australia which elevate ambient water-column methane concentrations more than 3,000 times. We quantified the spatial-temporal variation in methane oxidation rates and the total microbial and methanotroph community composition (through the amplification and sequencing of 16S rRNA and particulate methane monooxygenase (pmoA) genes), and the factors mediating this variation, in reaches with and without macro-seeps. Sediment methane oxidation rates were, on average, 29 times greater, and the abundance of methanotrophs significantly higher, in the vicinity of methane macro-seeps compared to non-seep sites. Methylocystis was the most abundant methanotroph group at all sites, but type Ib methanotrophs showed the steepest increase in abundance at seep sites. pmoA gene analysis identified these as clade 501, while 16S rRNA gene analysis identified these as the closely related genus Methylocaldum. Sediment methane oxidation rates and the relative abundance and composition of benthic microbial communities were primarily influenced by methane availability which was in turn related to variation in river discharge. Methane-derived carbon may be an important energy source for the aquatic food webs in reaches affected by natural gas macro-seeps.


Asunto(s)
Methylococcaceae , Gas Natural , Metano , Methylococcaceae/genética , Filogenia , ARN Ribosómico 16S/genética , Ríos
9.
Sci Total Environ ; 781: 146526, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-33798899

RESUMEN

Traditional environmental monitoring techniques are well suited to resolving acute exposure effects but lack resolution in determining subtle shifts in ecosystem functions resulting from chronic exposure(s). Surveillance with sensitive omics-based technologies could bridge this gap but, to date, most omics-based environmental studies have focused on previously degraded environments, identifying key metabolic differences resulting from anthropogenic perturbations. Here, we apply omics-based approaches to pristine environments to establish blueprints of microbial functionality within healthy estuarine sediment communities. We collected surface sediments (n = 50) from four pristine estuaries along the Western Cape York Peninsula of Far North Queensland, Australia. Sediment microbiomes were analyzed for 16S rRNA amplicon sequences, central carbon metabolism metabolites and associated secondary metabolites via targeted and untargeted metabolic profiling methods. Multivariate statistical analyses indicated heterogeneity among all the sampled estuaries, however, taxa-function relationships could be established that predicted community metabolism potential. Twenty-four correlated gene-metabolite pathways were identified and used to establish sediment microbial blueprints of essential carbon metabolism and amino acid biosynthesis that were positively correlated with community metabolic function outputs (2-oxisocapraote, tryptophan, histidine citrulline and succinic acid). In addition, an increase in the 125 KEGG genes related to metal homeostasis and metal resistance was observed, although, none of the detected metabolites related to these specific genes upon integration. However, there was a correlation between metal abundance and functional genes related to Fe and Zn metabolism. Our results establish a baseline microbial blueprint for the pristine sediment microbiome, one that drives important ecosystem services and to which future ecosurveillance monitoring can be compared.

10.
Nat Commun ; 12(1): 2213, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33850115

RESUMEN

Global oceanographic monitoring initiatives originally measured abiotic essential ocean variables but are currently incorporating biological and metagenomic sampling programs. There is, however, a large knowledge gap on how to infer bacterial functions, the information sought by biogeochemists, ecologists, and modelers, from the bacterial taxonomic information (produced by bacterial marker gene surveys). Here, we provide a correlative understanding of how a bacterial marker gene (16S rRNA) can be used to infer latitudinal trends for metabolic pathways in global monitoring campaigns. From a transect spanning 7000 km in the South Pacific Ocean we infer ten metabolic pathways from 16S rRNA gene sequences and 11 corresponding metagenome samples, which relate to metabolic processes of primary productivity, temperature-regulated thermodynamic effects, coping strategies for nutrient limitation, energy metabolism, and organic matter degradation. This study demonstrates that low-cost, high-throughput bacterial marker gene data, can be used to infer shifts in the metabolic strategies at the community scale.


Asunto(s)
Bacterias/genética , Genes Bacterianos/genética , Redes y Vías Metabólicas/genética , Metagenómica/métodos , Bacterias/clasificación , Fenómenos Fisiológicos Bacterianos , Biodiversidad , Ecología , Metagenoma , Océano Pacífico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Termodinámica
11.
Front Microbiol ; 11: 1847, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849444

RESUMEN

The cosmopolitan haptophyte Phaeocystis is recognized as a key contributor to marine biogeochemical cycling and important primary producer within polar marine environments. Yet, little is known about its solitary, non-colonial cell stages or its distribution during the colder, low-productivity seasons. We examined the biogeography of Phaeocystis along a high-resolution (0.5-degree latitudinal interval) transect from the Antarctic ice-edge to the equator of the South Pacific, in the austral autumn-winter. Using high-throughput 18S rRNA gene sequences with single nucleotide variable (zero-radius) operational taxonomic units (zOTUs) allowed us to explore the possibility of strain-level variation. From water samples within the upper water column, we show the presence of an abundant Phaeocystis assemblage that persisted during the colder months, contributing up to 9% of the microbial eukaryote community at high latitudes. The biogeography of Phaeocystis was strongly shaped by oceanographic boundaries, most prominently the polar and subantarctic fronts. Marked changes in dominant Phaeocystis antarctica zOTUs between different frontal zones support the concept that ecotypes may exist within the Phaeocystis assemblage. Our findings also show that the Phaeocystis assemblage did not abide by the classical latitudinal diversity gradient of increasing richness from the poles to the tropics; richness peaked at 30°S and declined to a minimum at 5°S. Another surprise was that P. globosa and P. cordata, previously thought to be restricted to the northern hemisphere, were detected at moderate abundances within the Southern Ocean. Our results emphasize the importance of oceanographic processes in shaping the biogeography of Phaeocystis and highlights the importance of genomics-based exploration of Phaeocystis, which have found the assemblage to be more complex than previously understood. The high winter relative abundance of the Phaeocystis assemblage suggests it could be involved in more complex ecological interactions during the less productive seasons, which should be considered in future studies to better understand the ecological role and strategies of this keystone species.

12.
Front Microbiol ; 11: 1261, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655525

RESUMEN

Increasing nitrogen (N) loads present a threat to estuaries, which are among the most heavily populated and perturbed parts of the world. N removal is largely mediated by the sediment microbial process of denitrification, in direct competition to dissimilatory nitrate reduction to ammonium (DNRA), which recycles nitrate to ammonium. Molecular proxies for N pathways are increasingly measured and analyzed, a major question in microbial ecology, however, is whether these proxies can add predictive power around the fate of N. We analyzed the diversity and community composition of sediment nirS and nrfA genes in 11 temperate estuaries, covering four types of land use in Australia, and analyzed how these might be used to predict N removal. Our data suggest that sediment microbiomes play a central role in controlling the magnitude of the individual N removal rates in the 11 estuaries. Inclusion, however, of relative gene abundances of 16S, nirS, nrfA, including their ratios did not improve physicochemical measurement-based regression models to predict rates of denitrification or DNRA. Co-occurrence network analyses of nirS showed a greater modularity and a lower number of keystone OTUs in pristine sites compared to urban estuaries, suggesting a higher degree of niche partitioning in pristine estuaries. The distinctive differences between the urban and pristine network structures suggest that the nirS gene could be a likely gene candidate to understand the mechanisms by which these denitrifying communities form and respond to anthropogenic pressures.

13.
Glob Chang Biol ; 26(10): 5613-5629, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32715608

RESUMEN

Western boundary currents (WBCs) redistribute heat and oligotrophic seawater from the tropics to temperate latitudes, with several displaying substantial climate change-driven intensification over the last century. Strengthening WBCs have been implicated in the poleward range expansion of marine macroflora and fauna, however, the impacts on the structure and function of temperate microbial communities are largely unknown. Here we show that the major subtropical WBC of the South Pacific Ocean, the East Australian Current (EAC), transports microbial assemblages that maintain tropical and oligotrophic (k-strategist) signatures, to seasonally displace more copiotrophic (r-strategist) temperate microbial populations within temperate latitudes of the Tasman Sea. We identified specific characteristics of EAC microbial assemblages compared with non-EAC assemblages, including strain transitions within the SAR11 clade, enrichment of Prochlorococcus, predicted smaller genome sizes and shifts in the importance of several functional genes, including those associated with cyanobacterial photosynthesis, secondary metabolism and fatty acid and lipid transport. At a temperate time-series site in the Tasman Sea, we observed significant reductions in standing stocks of total carbon and chlorophyll a, and a shift towards smaller phytoplankton and carnivorous copepods, associated with the seasonal impact of the EAC microbial assemblage. In light of the substantial shifts in microbial assemblage structure and function associated with the EAC, we conclude that climate-driven expansions of WBCs will expand the range of tropical oligotrophic microbes, and potentially profoundly impact the trophic status of temperate waters.


Asunto(s)
Prochlorococcus , Agua de Mar , Australia , Clorofila A , Océano Pacífico
14.
Environ Microbiol ; 21(5): 1782-1797, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30761716

RESUMEN

Exploratory drilling for deep-sea oil and gas resources is planned for the Great Australian Bight (GAB). There is scant knowledge of the region's benthic ecosystems and no baseline information of the region's indigenous oil degrading bacteria. To address this knowledge gap, we used next generation sequencing (NGS) of three marker genes (alkB, c23o and pmoA) to detect and characterize the microbial communities capable of aerobic hydrocarbon degradation. Unique, highly novel microbial communities capable of degrading hydrocarbons occur in surface sediments at depths between 200 and 2800 m. Clustering at 97% demonstrated differences in community structure with depth, changing most markedly between 400 and 1000 m depth on the continental slope, and identified putative functional 'ecotypes' related to depth. Observed differences in community structure showed strong correlations with temperature, other physicochemical properties of the overlying water column and are further modulated by differences in sediment grain size. This study provides important baseline data on hydrocarbon degrading microbial communities prior to the start of petroleum resource extraction. Our data will inform future ecological monitoring of the GAB deep-sea ecosystem.


Asunto(s)
Bacterias/metabolismo , Sedimentos Geológicos/microbiología , Hidrocarburos/metabolismo , Aerobiosis , Australia , Bacterias/clasificación , Bacterias/genética , Biodegradación Ambiental , Sedimentos Geológicos/análisis , Microbiota , Petróleo/metabolismo , Contaminación por Petróleo
15.
Methods Mol Biol ; 1918: 47-56, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30580398

RESUMEN

The sequence-specific end labeling of oligonucleotides (SSELO) is an alternative labelling approach for the short-oligonucleotide diagnostic microarrays that was firstly described by Rudi and coworkers (ScientificWorldJournal 3:578-584, 2003). SSELO approach is unique in a way that it shifts the specificity determining step from hybridization to labeling, ensuring both high specificity (with careful probe design even single nucleotide polymorphisms (SNPs) can be detected) and sensitivity (detection sensitivity in the range of 0.1% relative abundance has been demonstrated) of the diagnostic system. These features make SSELO approach a perfect choice for the development of microbial diagnostic microarrays, in particular in the frame of foodborne bacterial pathogen detection.


Asunto(s)
Técnicas Microbiológicas , Tipificación Molecular , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Oligonucleótidos , Tipificación Molecular/métodos , Hibridación de Ácido Nucleico/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Reacción en Cadena de la Polimerasa , Sensibilidad y Especificidad
16.
Proc Natl Acad Sci U S A ; 115(35): E8266-E8275, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30108147

RESUMEN

Marine microbes along with microeukaryotes are key regulators of oceanic biogeochemical pathways. Here we present a high-resolution (every 0.5° of latitude) dataset describing microbial pro- and eukaryotic richness in the surface and just below the thermocline along a 7,000-km transect from 66°S at the Antarctic ice edge to the equator in the South Pacific Ocean. The transect, conducted in austral winter, covered key oceanographic features including crossing of the polar front (PF), the subtropical front (STF), and the equatorial upwelling region. Our data indicate that temperature does not determine patterns of marine microbial richness, complementing the global model data from Ladau et al. [Ladau J, et al. (2013) ISME J 7:1669-1677]. Rather, NH4+, nanophytoplankton, and primary productivity were the main drivers for archaeal and bacterial richness. Eukaryote richness was highest in the least-productive ocean region, the tropical oligotrophic province. We also observed a unique diversity pattern in the South Pacific Ocean: a regional increase in archaeal and bacterial diversity between 10°S and the equator. Rapoport's rule describes the tendency for the latitudinal ranges of species to increase with latitude. Our data showed that the mean latitudinal ranges of archaea and bacteria decreased with latitude. We show that permanent oceanographic features, such as the STF and the equatorial upwelling, can have a significant influence on both alpha-diversity and beta-diversity of pro- and eukaryotes.


Asunto(s)
Archaea/fisiología , Bacterias , Fenómenos Fisiológicos Bacterianos , Biodiversidad , Fitoplancton/fisiología , Microbiología del Agua , Regiones Antárticas , Archaea/clasificación , Océano Pacífico , Fitoplancton/clasificación
17.
Sci Data ; 5: 180130, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30015804

RESUMEN

Sustained observations of microbial dynamics are rare, especially in southern hemisphere waters. The Australian Marine Microbial Biodiversity Initiative (AMMBI) provides methodologically standardized, continental scale, temporal phylogenetic amplicon sequencing data describing Bacteria, Archaea and microbial Eukarya assemblages. Sequence data is linked to extensive physical, biological and chemical oceanographic contextual information. Samples are collected monthly to seasonally from multiple depths at seven sites: Darwin Harbour (Northern Territory), Yongala (Queensland), North Stradbroke Island (Queensland), Port Hacking (New South Wales), Maria Island (Tasmania), Kangaroo Island (South Australia), Rottnest Island (Western Australia). These sites span ~30° of latitude and ~38° longitude, range from tropical to cold temperate zones, and are influenced by both local and globally significant oceanographic and climatic features. All sequence datasets are provided in both raw and processed fashion. Currently 952 samples are publically available for bacteria and archaea which include 88,951,761 bacterial (72,435 unique) and 70,463,079 archaeal (24,205 unique) 16 S rRNA v1-3 gene sequences, and 388 samples are available for eukaryotes which include 39,801,050 (78,463 unique) 18 S rRNA v4 gene sequences.


Asunto(s)
Archaea/genética , Bacterias/genética , Microbiota , Australia , Biodiversidad , Océanos y Mares , Análisis de Secuencia de ARN , Microbiología del Agua
18.
FEMS Microbiol Ecol ; 93(4)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334116

RESUMEN

Harmful cyanobacterial blooms (cyanoHABs) are a major threat to freshwater ecosystems worldwide. Evidence suggests that both nitrogen and phosphorus are important nutrients in the development and proliferation of blooms, yet much less is known about nitrogen cycling dynamics in these systems. To assess the potential nitrogen cycling function of the cyanoHAB community, surface water samples were collected in Lake Tai (Taihu), China over a 5-month bloom event in 2014. The expression of six nitrogen cycling genes (nifH, hzsA, nxrB, nrfA, amoA, nosZ) was surveyed using a targeted microarray with probes designed to provide phylogenetic information. N-Cycling gene expression varied spatially across Taihu, most notably near the mouth of the Dapu River. Expression of nifH was observed across the lake and attributable to both Proteobacteria and Cyanobacteria: Proteobacteria were major contributors to nifH signal near shore. Other N transformations such as anaerobic ammonia oxidation and denitrification were evident in the surface waters as well. Observations in this study highlight the potential importance of heterotrophic bacteria in N-cycling associated with cyanoHABs.


Asunto(s)
Lagos/microbiología , Ciclo del Nitrógeno , Nitrógeno/metabolismo , China , Cianobacterias/genética , Ecosistema , Monitoreo del Ambiente , Eutrofización , Procesos Heterotróficos , Fósforo/análisis , Filogenia , Ríos
19.
Biol Lett ; 13(2)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28148831

RESUMEN

Geographical gradients in selection can shape different genetic architectures in natural populations, reflecting potential genetic constraints for adaptive evolution under climate change. Investigation of natural pH/pCO2 variation in upwelling regions reveals different spatio-temporal patterns of natural selection, generating genetic and phenotypic clines in populations, and potentially leading to local adaptation, relevant to understanding effects of ocean acidification (OA). Strong directional selection, associated with intense and continuous upwellings, may have depleted genetic variation in populations within these upwelling regions, favouring increased tolerances to low pH but with an associated cost in other traits. In contrast, diversifying or weak directional selection in populations with seasonal upwellings or outside major upwelling regions may have resulted in higher genetic variances and the lack of genetic correlations among traits. Testing this hypothesis in geographical regions with similar environmental conditions to those predicted under climate change will build insights into how selection may act in the future and how populations may respond to stressors such as OA.


Asunto(s)
Adaptación Biológica/genética , Evolución Biológica , Dióxido de Carbono/fisiología , Agua de Mar/química , Dióxido de Carbono/toxicidad , Cambio Climático , Genética de Población , Geografía , Concentración de Iones de Hidrógeno , Océanos y Mares , Selección Genética
20.
Front Microbiol ; 7: 851, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27379029

RESUMEN

Terrestrial tropical methane seep habitats are important ecosystems in the methane cycle. Methane oxidizing bacteria play a key role in these ecosystems as they reduce methane emissions to the atmosphere. Here, we describe the isolation and initial characterization of two novel moderately thermophilic and acid-tolerant obligate methanotrophs, assigned BFH1 and BFH2 recovered from a tropical methane seep topsoil habitat. The new isolates were strictly aerobic, non-motile, coccus-shaped and utilized methane and methanol as sole carbon and energy source. Isolates grew at pH range 4.2-7.5 (optimal 5.5-6.0) and at a temperature range of 30-60°C (optimal 51-55°C). 16S rRNA gene phylogeny placed them in a well-separated branch forming a cluster together with the genus Methylocaldum as the closest relatives (93.1-94.1% sequence similarity). The genes pmoA, mxaF, and cbbL were detected, but mmoX was absent. Strains BFH1 and BFH2 are, to our knowledge, the first isolated acid-tolerant moderately thermophilic methane oxidizers of the class Gammaproteobacteria. Each strain probably denotes a novel species and they most likely represent a novel genus within the family Methylococcaceae of type I methanotrophs. Furthermore, the isolates increase our knowledge of acid-tolerant aerobic methanotrophs and signify a previously unrecognized biological methane sink in tropical ecosystems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...