Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Commun Biol ; 5(1): 1096, 2022 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-36245045

RESUMEN

Herpes simplex virus (HSV) receptor engagement activates phospholipid scramblase triggering Akt translocation to the outer leaflet of the plasma membrane where its subsequent phosphorylation promotes viral entry. We hypothesize that this previously unrecognized outside-inside signaling pathway is employed by other viruses and that cell-impermeable kinase inhibitors could provide novel antivirals. We synthesized a cell-impermeable analog of staurosporine, CIMSS, which inhibited outer membrane HSV-induced Akt phosphorylation and blocked viral entry without inducing apoptosis. CIMSS also blocked the phosphorylation of 3-phosphoinositide dependent protein kinase 1 and phospholipase C gamma, which were both detected at the outer leaflet following HSV exposure. Moreover, vesicular stomatitis virus pseudotyped with SARS-CoV-2 spike protein (VSV-S), but not native VSV or VSV pseudotyped with Ebola virus glycoprotein, triggered this scramblase-Akt outer membrane signaling pathway. VSV-S and native SARS-CoV-2 infection were inhibited by CIMSS. Thus, CIMSS uncovered unique extracellular kinase processes linked to HSV and SARS-CoV-2 entry.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Glicoproteínas/metabolismo , Humanos , Fosfatidilinositoles , Fosfolipasa C gamma/metabolismo , Proteínas de Transferencia de Fosfolípidos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glicoproteína de la Espiga del Coronavirus , Estaurosporina/farmacología , Proteínas del Envoltorio Viral/metabolismo
3.
J Exp Med ; 218(12)2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34709351

RESUMEN

HVEM is a TNF (tumor necrosis factor) receptor contributing to a broad range of immune functions involving diverse cell types. It interacts with a TNF ligand, LIGHT, and immunoglobulin (Ig) superfamily members BTLA and CD160. Assessing the functional impact of HVEM binding to specific ligands in different settings has been complicated by the multiple interactions of HVEM and HVEM binding partners. To dissect the molecular basis for multiple functions, we determined crystal structures that reveal the distinct HVEM surfaces that engage LIGHT or BTLA/CD160, including the human HVEM-LIGHT-CD160 ternary complex, with HVEM interacting simultaneously with both binding partners. Based on these structures, we generated mouse HVEM mutants that selectively recognized either the TNF or Ig ligands in vitro. Knockin mice expressing these muteins maintain expression of all the proteins in the HVEM network, yet they demonstrate selective functions for LIGHT in the clearance of bacteria in the intestine and for the Ig ligands in the amelioration of liver inflammation.


Asunto(s)
Antígenos CD/metabolismo , Receptores Inmunológicos/metabolismo , Miembro 14 de Receptores del Factor de Necrosis Tumoral/química , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Animales , Antígenos CD/química , Antígenos CD/genética , Cristalografía por Rayos X , Drosophila/citología , Drosophila/genética , Femenino , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Mutación , Receptores Inmunológicos/química , Receptores Inmunológicos/genética , Miembro 14 de Receptores del Factor de Necrosis Tumoral/genética , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/química , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Yersiniosis/genética , Yersiniosis/patología
4.
ACS Omega ; 6(1): 85-102, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33458462

RESUMEN

Coronavirus disease 2019 (COVID-19) is a global health crisis caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and there is a critical need to produce large quantities of high-quality SARS-CoV-2 Spike (S) protein for use in both clinical and basic science settings. To address this need, we have evaluated the expression and purification of two previously reported S protein constructs in Expi293F and ExpiCHO-S cells, two different cell lines selected for increased protein expression. We show that ExpiCHO-S cells produce enhanced yields of both SARS-CoV-2 S proteins. Biochemical, biophysical, and structural (cryo-EM) characterizations of the SARS-CoV-2 S proteins produced in both cell lines demonstrate that the reported purification strategy yields high-quality S protein (nonaggregated, uniform material with appropriate biochemical and biophysical properties), and analysis of 20 deposited S protein cryo-EM structures reveals conformation plasticity in the region composed of amino acids 614-642 and 828-854. Importantly, we show that multiple preparations of these two recombinant S proteins from either cell line exhibit identical behavior in two different serology assays. We also evaluate the specificity of S protein-mediated host cell binding by examining interactions with proposed binding partners in the human secretome and report no novel binding partners and notably fail to validate the Spike:CD147 interaction. In addition, the antigenicity of these proteins is demonstrated by standard ELISAs and in a flexible protein microarray format. Collectively, we establish an array of metrics for ensuring the production of high-quality S protein to support clinical, biological, biochemical, structural, and mechanistic studies to combat the global pandemic caused by SARS-CoV-2.

5.
PLoS One ; 15(6): e0233578, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32497097

RESUMEN

The B7 family represents one of the best-studied subgroups within the Ig superfamily, yet new interactions continue to be discovered. However, this binding promiscuity represents a major challenge for defining the biological contribution of each specific interaction. We developed a strategy for addressing these challenges by combining cell microarray and high-throughput FACS methods to screen for promiscuous binding events, map binding interfaces, and generate functionally selective reagents. Applying this approach to the interactions of mPD-L1 with its receptor mPD-1 and its ligand mB7-1, we identified the binding interface of mB7-1 on mPD-L1 and as a result generated mPD-L1 mutants with binding selectivity for mB7-1 or mPD-1. Next, using a panel of mB7-1 mutants, we mapped the binding sites of mCTLA-4, mCD28 and mPD-L1. Surprisingly, the mPD-L1 binding site mapped to the dimer interface surface of mB7-1, placing it distal from the CTLA-4/CD28 recognition surface. Using two independent approaches, we demonstrated that mPD-L1 and mB7-1 bind in cis, consistent with recent reports from Chaudhri A et al. and Sugiura D et al. We further provide evidence that while CTLA-4 and CD28 do not directly compete with PD-L1 for binding to B7-1, they can disrupt the cis PD-L1:B7-1 complex by reorganizing B7-1 on the cell surface. These observations offer new functional insights into the regulatory mechanisms associated with this group of B7 family proteins and provide new tools to elucidate their function in vitro and in vivo.


Asunto(s)
Complejo Antígeno-Anticuerpo/metabolismo , Antígeno B7-1/metabolismo , Antígeno B7-H1/metabolismo , Proteínas Mutantes/metabolismo , Animales , Antígenos de Superficie/metabolismo , Antígeno B7-1/genética , Antígeno B7-H1/genética , Sitios de Unión , Antígenos CD28/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Antígeno CTLA-4/metabolismo , Células HEK293 , Humanos , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Transfección
6.
bioRxiv ; 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32587972

RESUMEN

Coronavirus disease 2019 ( COVID-19 ) is a global health crisis caused by the novel severe acute respiratory syndrome coronavirus 2 ( SARS-CoV-2 ), and there is a critical need to produce large quantities of high-quality SARS-CoV-2 Spike ( S ) protein for use in both clinical and basic science settings. To address this need, we have evaluated the expression and purification of two previously reported S protein constructs in Expi293F ™ and ExpiCHO-S ™ cells, two different cell lines selected for increased expression of secreted glycoproteins. We show that ExpiCHO-S ™ cells produce enhanced yields of both SARS-CoV-2 S proteins. Biochemical, biophysical, and structural ( cryo-EM ) characterization of the SARS-CoV-2 S proteins produced in both cell lines demonstrate that the reported purification strategy yields high quality S protein (non-aggregated, uniform material with appropriate biochemical and biophysical properties). Importantly, we show that multiple preparations of these two recombinant S proteins from either cell line exhibit identical behavior in two different serology assays. We also evaluate the specificity of S protein-mediated host cell binding by examining interactions with proposed binding partners in the human secretome. In addition, the antigenicity of these proteins is demonstrated by standard ELISAs, and in a flexible protein microarray format. Collectively, we establish an array of metrics for ensuring the production of high-quality S protein to support clinical, biological, biochemical, structural and mechanistic studies to combat the global pandemic caused by SARS-CoV-2.

7.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 5): 194-198, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32356520

RESUMEN

Chromatin is the complex assembly of nucleic acids and proteins that makes up the physiological form of the eukaryotic genome. The nucleosome is the fundamental repeating unit of chromatin, and is composed of ∼147 bp of DNA wrapped around a histone octamer formed by two copies of each core histone: H2A, H2B, H3 and H4. Prior to nucleosome assembly, and during histone eviction, histones are typically assembled into soluble H2A/H2B dimers and H3/H4 dimers and tetramers. A multitude of factors interact with soluble histone dimers and tetramers, including chaperones, importins, histone-modifying enzymes and chromatin-remodeling enzymes. It is still unclear how many of these proteins recognize soluble histones; therefore, there is a need for new structural tools to study non-nucleosomal histones. Here, a single-chain, tailless Xenopus H2A/H2B dimer was created by directly fusing the C-terminus of H2B to the N-terminus of H2A. It is shown that this construct (termed scH2BH2A) is readily expressed in bacteria and can be purified under non-denaturing conditions. A 1.31 Šresolution crystal structure of scH2BH2A shows that it adopts a conformation that is nearly identical to that of nucleosomal H2A/H2B. This new tool is likely to facilitate future structural studies of many H2A/H2B-interacting proteins.


Asunto(s)
Histonas/química , Xenopus/metabolismo , Animales , Cristalografía por Rayos X , Dimerización , Escherichia coli/metabolismo , Histonas/aislamiento & purificación , Enlace de Hidrógeno , Conformación Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Electricidad Estática
8.
Biomolecules ; 10(5)2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349291

RESUMEN

Boronic acid transition-state analog inhibitors (BATSIs) are partners with ß-lactam antibiotics for the treatment of complex bacterial infections. Herein, microbiological, biochemical, and structural findings on four BATSIs with the FOX-4 cephamycinase, a class C ß-lactamase that rapidly hydrolyzes cefoxitin, are revealed. FOX-4 is an extended-spectrum class C cephalosporinase that demonstrates conformational flexibility when complexed with certain ligands. Like other ß-lactamases of this class, studies on FOX-4 reveal important insights into structure-activity relationships. We show that SM23, a BATSI, shows both remarkable flexibility and affinity, binding similarly to other ß-lactamases, yet retaining an IC50 value < 0.1 µM. Our analyses open up new opportunities for the design of novel transition-state analogs of class C enzymes.


Asunto(s)
Antibacterianos/química , Cefalotina/análogos & derivados , Inhibidores Enzimáticos/química , Proteínas de Escherichia coli/química , beta-Lactamasas/química , Antibacterianos/farmacología , Sitios de Unión , Ácidos Borónicos/química , Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , beta-Lactamasas/metabolismo
9.
Biochemistry ; 59(39): 3696-3708, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32207970

RESUMEN

Histone H3 arginine 2 (H3R2) is post-translationally modified in three different states by "writers" of the protein arginine methyltransferase (PRMT) family. H3R2 methylarginine isoforms include PRMT5-catalyzed monomethylation (me1) and symmetric dimethylation (me2s) and PRMT6-catalyzed me1 and asymmetric dimethylation (me2a). WD-40 repeat-containing protein 5 (WDR5) is an epigenetic "reader" protein that interacts with H3R2. Previous studies suggested that H3R2me2s specified a high-affinity interaction with WDR5. However, our prior biological data prompted the hypothesis that WDR5 may also interact with H3R2me1. Here, using highly accurate quantitative binding analysis combined with high-resolution crystal structures of WDR5 in complex with unmodified (me0) and me1/me2s l-arginine amino acids and in complex with the H3R2me1 peptide, we provide a rigorous biochemical study and address long-standing discrepancies of this important biological interaction. Despite modest structural differences at the binding interface, our study supports an interaction model regulated by a binary arginine methylation switch: H3R2me2a prevents interaction with WDR5, whereas H3R2me0, -me1, and -me2s are equally permissive.


Asunto(s)
Arginina/metabolismo , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Arginina/análisis , Cristalografía por Rayos X , Histonas/química , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Metilación , Modelos Moleculares , Unión Proteica , Conformación Proteica , Mapas de Interacción de Proteínas
10.
Proc Natl Acad Sci U S A ; 116(32): 15907-15913, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31320588

RESUMEN

Mycobacterium tuberculosis (Mtb) is the etiological agent of tuberculosis. One-fourth of the global population is estimated to be infected with Mtb, accounting for ∼1.3 million deaths in 2017. As part of the immune response to Mtb infection, macrophages produce metabolites with the purpose of inhibiting or killing the bacterial cell. Itaconate is an abundant host metabolite thought to be both an antimicrobial agent and a modulator of the host inflammatory response. However, the exact mode of action of itaconate remains unclear. Here, we show that Mtb has an itaconate dissimilation pathway and that the last enzyme in this pathway, Rv2498c, also participates in l-leucine catabolism. Our results from phylogenetic analysis, in vitro enzymatic assays, X-ray crystallography, and in vivo Mtb experiments, identified Mtb Rv2498c as a bifunctional ß-hydroxyacyl-CoA lyase and that deletion of the rv2498c gene from the Mtb genome resulted in attenuation in a mouse infection model. Altogether, this report describes an itaconate resistance mechanism in Mtb and an l-leucine catabolic pathway that proceeds via an unprecedented (R)-3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) stereospecific route in nature.


Asunto(s)
Leucina/metabolismo , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/metabolismo , Succinatos/metabolismo , Aerosoles , Animales , Biocatálisis , Ligandos , Liasas/metabolismo , Malatos/metabolismo , Ratones Endogámicos C57BL , Filogenia , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Tuberculosis/microbiología , Tuberculosis/patología
11.
Structure ; 27(8): 1286-1295.e4, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31230945

RESUMEN

CD160 is a signaling molecule that interacts with herpes virus entry mediator (HVEM) and contributes to a wide range of immune responses, including T cell inhibition, natural killer cell activation, and mucosal immunity. GPI-anchored and transmembrane isoforms of CD160 share the same ectodomain responsible for HVEM engagement, which leads to bidirectional signaling. Despite the importance of the CD160:HVEM signaling axis and its therapeutic relevance, the structural and mechanistic basis underlying CD160-HVEM engagement has not been described. We report the crystal structures of the human CD160 extracellular domain and its complex with human HVEM. CD160 adopts a unique variation of the immunoglobulin fold and exists as a monomer in solution. The CD160:HVEM assembly exhibits a 1:1 stoichiometry and a binding interface similar to that observed in the BTLA:HVEM complex. Our work reveals the chemical and physical determinants underlying CD160:HVEM recognition and initiation of associated signaling processes.


Asunto(s)
Antígenos CD/química , Antígenos CD/metabolismo , Receptores Inmunológicos/química , Receptores Inmunológicos/metabolismo , Miembro 14 de Receptores del Factor de Necrosis Tumoral/química , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica en Lámina beta , Dominios Proteicos , Pliegue de Proteína
12.
Biochemistry ; 57(43): 6219-6227, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30277746

RESUMEN

The phosphotriesterase homology protein (PHP) from Escherichia coli is a member of a family of proteins that is related to phosphotriestrase (PTE), a bacterial enzyme from cog1735 with unusual substrate specificity toward the hydrolysis of synthetic organic phosphates and phosphonates. PHP was cloned, purified to homogeneity, and functionally characterized. The three-dimensional structure of PHP was determined at a resolution of 1.84 Å with zinc and phosphate in the active site. The protein folds as a distorted (ß/α)8-barrel and possesses a binuclear metal center in the active site. The catalytic function and substrate profile of PHP were investigated using a structure-guided approach that combined bioinformatics, computational docking, organic synthesis, and steady-state enzyme kinetics. PHP was found to catalyze the hydrolysis of phosphorylated glyceryl acetates. The best substrate was 1,2-diacetyl glycerol-3-phosphate with a kcat/ Km of 4.9 × 103 M-1 s-1. The presence of a phosphate group in the substrate was essential for enzymatic hydrolysis by the enzyme. It was surprising, however, to find that PHP was unable to hydrolyze any of the lactones tested as potential substrates, unlike most of the other enzymes from cog1735.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Hidrolasas/química , Hidrolasas/metabolismo , Organofosfonatos/metabolismo , Fosfatos/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Hidrólisis , Cinética , Modelos Moleculares , Especificidad por Sustrato
13.
Nat Chem Biol ; 14(7): 696-705, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29867142

RESUMEN

Colocation of the genes encoding ABC, TRAP, and TCT transport systems and catabolic pathways for the transported ligand provides a strategy for discovering novel microbial enzymes and pathways. We screened solute-binding proteins (SBPs) for ABC transport systems and identified three that bind D-apiose, a branched pentose in the cell walls of higher plants. Guided by sequence similarity networks (SSNs) and genome neighborhood networks (GNNs), the identities of the SBPs enabled the discovery of four catabolic pathways for D-apiose with eleven previously unknown reactions. The new enzymes include D-apionate oxidoisomerase, which catalyzes hydroxymethyl group migration, as well as 3-oxo-isoapionate-4-phosphate decarboxylase and 3-oxo-isoapionate-4-phosphate transcarboxylase/hydrolase, which are RuBisCO-like proteins (RLPs). The web tools for generating SSNs and GNNs are publicly accessible ( http://efi.igb.illinois.edu/efi-est/ ), so similar 'genomic enzymology' strategies for discovering novel pathways can be used by the community.


Asunto(s)
Pentosas/metabolismo , Biocatálisis , Humanos , Isomerasas/genética , Isomerasas/metabolismo , Modelos Moleculares , Pentosas/química
14.
Biochemistry ; 57(26): 3676-3689, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29767960

RESUMEN

Studying the evolution of catalytically promiscuous enzymes like those from the N-succinylamino acid racemase/ o-succinylbenzoate synthase (NSAR/OSBS) subfamily can reveal mechanisms by which new functions evolve. Some enzymes in this subfamily have only OSBS activity, while others catalyze OSBS and NSAR reactions. We characterized several NSAR/OSBS subfamily enzymes as a step toward determining the structural basis for evolving NSAR activity. Three enzymes were promiscuous, like most other characterized NSAR/OSBS subfamily enzymes. However, Alicyclobacillus acidocaldarius OSBS (AaOSBS) efficiently catalyzes OSBS activity but lacks detectable NSAR activity. Competitive inhibition and molecular modeling show that AaOSBS binds N-succinylphenylglycine with moderate affinity in a site that overlaps its normal substrate. On the basis of possible steric conflicts identified by molecular modeling and sequence conservation within the NSAR/OSBS subfamily, we identified one mutation, Y299I, that increased NSAR activity from undetectable to 1.2 × 102 M-1 s-1 without affecting OSBS activity. This mutation does not appear to affect binding affinity but instead affects kcat, by reorienting the substrate or modifying conformational changes to allow both catalytic lysines to access the proton that is moved during the reaction. This is the first site known to affect reaction specificity in the NSAR/OSBS subfamily. However, this gain of activity was obliterated by a second mutation, M18F. Epistatic interference by M18F was unexpected because a phenylalanine at this position is important in another NSAR/OSBS enzyme. Together, modest NSAR activity of Y299I AaOSBS and epistasis between sites 18 and 299 indicate that additional sites influenced the evolution of NSAR reaction specificity in the NSAR/OSBS subfamily.


Asunto(s)
Alicyclobacillus/enzimología , Isomerasas de Aminoácido/metabolismo , Liasas de Carbono-Carbono/metabolismo , Alicyclobacillus/química , Alicyclobacillus/genética , Alicyclobacillus/metabolismo , Isomerasas de Aminoácido/química , Isomerasas de Aminoácido/genética , Liasas de Carbono-Carbono/química , Liasas de Carbono-Carbono/genética , Dominio Catalítico , Cristalografía por Rayos X , Evolución Molecular , Modelos Moleculares , Filogenia , Conformación Proteica , Especificidad por Sustrato
15.
Proc Natl Acad Sci U S A ; 115(15): 3912-3917, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29581255

RESUMEN

Ipilimumab, a monoclonal antibody that recognizes cytotoxic T lymphocyte antigen (CTLA)-4, was the first approved "checkpoint"-blocking anticancer therapy. In mouse tumor models, the response to antibodies against CTLA-4 depends entirely on expression of the Fcγ receptor (FcγR), which may facilitate antibody-dependent cellular phagocytosis, but the contribution of simple CTLA-4 blockade remains unknown. To understand the role of CTLA-4 blockade in the complete absence of Fc-dependent functions, we developed H11, a high-affinity alpaca heavy chain-only antibody fragment (VHH) against CTLA-4. The VHH H11 lacks an Fc portion, binds monovalently to CTLA-4, and inhibits interactions between CTLA-4 and its ligand by occluding the ligand-binding motif on CTLA-4 as shown crystallographically. We used H11 to visualize CTLA-4 expression in vivo using whole-animal immuno-PET, finding that surface-accessible CTLA-4 is largely confined to the tumor microenvironment. Despite this, H11-mediated CTLA-4 blockade has minimal effects on antitumor responses. Installation of the murine IgG2a constant region on H11 dramatically enhances its antitumor response. Coadministration of the monovalent H11 VHH blocks the efficacy of a full-sized therapeutic antibody. We were thus able to demonstrate that CTLA-4-binding antibodies require an Fc domain for antitumor effect.


Asunto(s)
Antígeno CTLA-4/inmunología , Fragmentos Fc de Inmunoglobulinas/administración & dosificación , Fragmentos de Inmunoglobulinas/administración & dosificación , Neoplasias/terapia , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Antígeno CTLA-4/química , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/inmunología , Fragmentos de Inmunoglobulinas/química , Fragmentos de Inmunoglobulinas/inmunología , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/inmunología , Inmunoterapia , Ratones , Ratones Endogámicos C57BL , Neoplasias/inmunología , Dominios Proteicos
16.
Biochemistry ; 57(8): 1306-1315, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29405700

RESUMEN

The Radical SAM (RS) enzyme PqqE catalyzes the first step in the biosynthesis of the bacterial cofactor pyrroloquinoline quinone, forming a new carbon-carbon bond between two side chains within the ribosomally synthesized peptide substrate PqqA. In addition to the active site RS 4Fe-4S cluster, PqqE is predicted to have two auxiliary Fe-S clusters, like the other members of the SPASM domain family. Here we identify these sites and examine their structure using a combination of X-ray crystallography and Mössbauer and electron paramagnetic resonance (EPR) spectroscopies. X-ray crystallography allows us to identify the ligands to each of the two auxiliary clusters at the C-terminal region of the protein. The auxiliary cluster nearest the RS site (AuxI) is in the form of a 2Fe-2S cluster ligated by four cysteines, an Fe-S center not seen previously in other SPASM domain proteins; this assignment is further supported by Mössbauer and EPR spectroscopies. The second, more remote cluster (AuxII) is a 4Fe-4S center that is ligated by three cysteine residues and one aspartate residue. In addition, we examined the roles these ligands play in catalysis by the RS and AuxII clusters using site-directed mutagenesis coupled with EPR spectroscopy. Lastly, we discuss the possible functional consequences that these unique AuxI and AuxII clusters may have in catalysis for PqqE and how these may extend to additional RS enzymes catalyzing the post-translational modification of ribosomally encoded peptides.


Asunto(s)
Proteínas Bacterianas/química , Endopeptidasas/química , Proteínas Hierro-Azufre/química , Methylobacterium extorquens/química , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Conformación Proteica , Temperatura
17.
Biochemistry ; 57(22): 3167-3175, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29283551

RESUMEN

γ-Resorcylate decarboxylase (γ-RSD) has evolved to catalyze the reversible decarboxylation of 2,6-dihydroxybenzoate to resorcinol in a nonoxidative fashion. This enzyme is of significant interest because of its potential for the production of γ-resorcylate and other benzoic acid derivatives under environmentally sustainable conditions. Kinetic constants for the decarboxylation of 2,6-dihydroxybenzoate catalyzed by γ-RSD from Polaromonas sp. JS666 are reported, and the enzyme is shown to be active with 2,3-dihydroxybenzoate, 2,4,6-trihydroxybenzoate, and 2,6-dihydroxy-4-methylbenzoate. The three-dimensional structure of γ-RSD with the inhibitor 2-nitroresorcinol (2-NR) bound in the active site is reported. 2-NR is directly ligated to a Mn2+ bound in the active site, and the nitro substituent of the inhibitor is tilted significantly from the plane of the phenyl ring. The inhibitor exhibits a binding mode different from that of the substrate bound in the previously determined structure of γ-RSD from Rhizobium sp. MTP-10005. On the basis of the crystal structure of the enzyme from Polaromonas sp. JS666, complementary density functional calculations were performed to investigate the reaction mechanism. In the proposed reaction mechanism, γ-RSD binds 2,6-dihydroxybenzoate by direct coordination of the active site manganese ion to the carboxylate anion of the substrate and one of the adjacent phenolic oxygens. The enzyme subsequently catalyzes the transfer of a proton to C1 of γ-resorcylate prior to the actual decarboxylation step. The reaction mechanism proposed previously, based on the structure of γ-RSD from Rhizobium sp. MTP-10005, is shown to be associated with high energies and thus less likely to be correct.


Asunto(s)
Carboxiliasas/química , Sitios de Unión , Carboxiliasas/fisiología , Catálisis , Cristalografía por Rayos X , Descarboxilación/fisiología , Hidroxibenzoatos/metabolismo , Cinética , Elementos Estructurales de las Proteínas/fisiología , Resorcinoles/química , Especificidad por Sustrato
18.
Biochemistry ; 57(8): 1293-1305, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29261291

RESUMEN

Disc large 1 (Dlg1) proteins, members of the MAGUK protein family, are linked to cell polarity via their participation in multiprotein assemblies. At their N-termini, Dlg1 proteins contain a L27 domain. Typically, the L27 domains participate in the formation of obligate hetero-oligomers with the L27 domains from their cognate partners. Among the MAGUKs, Dlg1 proteins exist as homo-oligomers, and the oligomerization is solely dependent on the L27 domain. Here we provide biochemical and structural evidence of homodimerization via the L27 domain of Dlg1 from Drosophila melanogaster. The structure reveals that the core of the dimer is formed by a distinctive six-helix assembly, involving all three conserved helices from each subunit (monomer). The homodimer interface is extended by the C-terminal tail of the L27 domain of Dlg1, which forms a two-stranded antiparallel ß-sheet. The structure reconciles and provides a structural context for a large body of available mutational data. From our analyses, we conclude that the observed L27 homodimerization is most likely a feature unique to the Dlg1 orthologs within the MAGUK family.


Asunto(s)
Proteínas de Drosophila/química , Drosophila melanogaster/química , Proteínas Supresoras de Tumor/química , Secuencia de Aminoácidos , Animales , Polaridad Celular , Drosophila melanogaster/citología , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios Proteicos , Multimerización de Proteína
19.
Nat Commun ; 8(1): 1693, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29167421

RESUMEN

Human indoleamine 2,3-dioxygenase 1 (hIDO1) is an attractive cancer immunotherapeutic target owing to its role in promoting tumoral immune escape. However, drug development has been hindered by limited structural information. Here, we report the crystal structures of hIDO1 in complex with its substrate, Trp, an inhibitor, epacadostat, and/or an effector, indole ethanol (IDE). The data reveal structural features of the active site (Sa) critical for substrate activation; in addition, they disclose a new inhibitor-binding mode and a distinct small molecule binding site (Si). Structure-guided mutation of a critical residue, F270, to glycine perturbs the Si site, allowing structural determination of an inhibitory complex, where both the Sa and Si sites are occupied by Trp. The Si site offers a novel target site for allosteric inhibitors and a molecular explanation for the previously baffling substrate-inhibition behavior of the enzyme. Taken together, the data open exciting new avenues for structure-based drug design.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/química , Regulación Alostérica , Sitio Alostérico , Sustitución de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oximas/química , Oximas/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Sulfonamidas/química , Sulfonamidas/farmacología , Triptófano/química , Triptófano/metabolismo
20.
J Am Chem Soc ; 139(34): 11734-11744, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28704043

RESUMEN

Sactipeptides are ribosomally synthesized peptides that contain a characteristic thioether bridge (sactionine bond) that is installed posttranslationally and is absolutely required for their antibiotic activity. Sactipeptide biosynthesis requires a unique family of radical SAM enzymes, which contain multiple [4Fe-4S] clusters, to form the requisite thioether bridge between a cysteine and the α-carbon of an opposing amino acid through radical-based chemistry. Here we present the structure of the sactionine bond-forming enzyme CteB, from Clostridium thermocellum ATCC 27405, with both SAM and an N-terminal fragment of its peptidyl-substrate at 2.04 Å resolution. CteB has the (ß/α)6-TIM barrel fold that is characteristic of radical SAM enzymes, as well as a C-terminal SPASM domain that contains two auxiliary [4Fe-4S] clusters. Importantly, one [4Fe-4S] cluster in the SPASM domain exhibits an open coordination site in absence of peptide substrate, which is coordinated by a peptidyl-cysteine residue in the bound state. The crystal structure of CteB also reveals an accessory N-terminal domain that has high structural similarity to a recently discovered motif present in several enzymes that act on ribosomally synthesized and post-translationally modified peptides (RiPPs), known as a RiPP precursor peptide recognition element (RRE). This crystal structure is the first of a sactionine bond forming enzyme and sheds light on structures and mechanisms of other members of this class such as AlbA or ThnB.


Asunto(s)
Clostridium thermocellum/enzimología , Proteínas Hierro-Azufre/metabolismo , Péptidos/metabolismo , Sulfuros/metabolismo , Secuencia de Aminoácidos , Vías Biosintéticas , Clostridium thermocellum/química , Clostridium thermocellum/metabolismo , Cristalografía por Rayos X , Proteínas Hierro-Azufre/química , Modelos Moleculares , Péptidos/química , Unión Proteica , Conformación Proteica , Procesamiento Proteico-Postraduccional , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Sulfuros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...