Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sep Sci ; 43(7): 1256-1264, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32012437

RESUMEN

Process streams of agro-food industries are often large and viscous. In order to fractionate such a stream the viscosity can be reduced by either a high temperature or dilution, the former is not an option in case of temperature sensitive components. Such streams are diluted prior to chromatographic fractionation, resulting in even larger volumes and high energy costs for sub-sequential water removal. The influence of feed viscosity on the performance of simulated moving bed chromatography has been investigated in a case study of the recovery of a γ-aminobutyric acid rich fraction from tomato serum. This work addresses the chromatographic system design, evaluates results from a pilot scale operation, and uses these to calculate the productivity and water use at elevated feed concentration. At the two higher feed viscosities (2.5 and 4 mPa·s) water use is lower and productivity higher, compared to the lowest feed viscosity (1 mPa·s). The behavior of the sugars for different feed viscosities can be described well by the model using the ratio of feed to eluent as dilution factor. The behavior of γ-aminobutyric acid is highly concentration dependent and the recovery could not be accurately predicted.


Asunto(s)
Solanum lycopersicum/química , Ácido gamma-Aminobutírico/aislamiento & purificación , Viscosidad , Ácido gamma-Aminobutírico/química
2.
J Chromatogr A ; 1613: 460688, 2020 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-31813564

RESUMEN

Diffusion inside pores is the rate limiting step in many preparative chromatographic separations and a key parameter for process design in weak interaction aqueous chromatographic separations employed in food and bio processing. This work aims at relating diffusion inside porous networks to properties of stationary phase and of diffusing molecules. Intraparticle diffusivities were determined for eight small molecules in nine different stationary phases made from three different backbone materials. Measured intraparticle diffusivities were compared to the predictive capability of the correlation by Mackie and Meares and the parallel pore model. All stationary phases were analyzed for their porosity, apparent pore size distribution and tortuosity, which are input parameters for the models. The parallel pore model provides understanding of the occurring phenomena, but the input parameters were difficult to determine experimentally. The model predictions of intraparticle diffusion were of limited accuracy. We show that prediction can be improved when combining the model of Mackie and Meares with the fraction of accessible pore volume. The accessible pore volume fraction can be determined from inverse size exclusion chromatographic measurements. Future work should further challenge the improved model, specifically widening the applicability to greater accessible pore fractions (> 0.7) with corresponding higher intraparticle diffusivities (Dp/Dm  > 0.2). A database of intraparticle diffusion and stationary phase pore property measurements is supplied, to contribute to general understanding of the relationship between intraparticle diffusion and pore properties.


Asunto(s)
Cromatografía en Gel , Difusión , Modelos Químicos , Porosidad
3.
J Chromatogr A ; 1493: 49-56, 2017 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-28318565

RESUMEN

In industrial liquid separation processes chromatography often has a key function in the optimization of yield and purity. For the design of an industrial system, chromatographic processes are generally simulated using mathematical models, tested and optimized at laboratory level, and then scaled up to pilot and subsequently industrial scale. To describe the system, experimental data and model data need to be fitted and extra column contribution must be determined. This paper describes the influence of extra-column volume on overall separation efficiency for lab scale and its impact on the design of large scale systems. Measurement of extra-column contribution was investigated in terms of mean retention time and variance using two different methods the commonly used zero dead volume connector and as an alternative the zero length column. Further a technique is presented to estimate extra-column contribution to band broadening for different injection volumes, velocities, and tracers based on representative measurements. When scaling up, often contribution of extra-column volume from laboratory equipment is neglected assuming to be on the safe side, however column efficiency is often lower than efficiency measured for the entire chromatographic system. Relation between system efficiency and column efficiency was investigated using laboratory data and the lumped kinetic model. Depending on the ratio of extra-column volume to retention volume in the system, deduced column efficiency was up to 20% smaller than overall system efficiency. This ratio revealed the misleading nature of the term efficiency loss, when describing influence of extra-column volume on column efficiency. A scheme, which relates the relative variance of the system to the relative extra-column volume, provided an assessment of under- or overestimation of column efficiency. In this article it is shown how scaling up a system based on laboratory data, where extra-column volume contribution is not accounted for, may severely overestimate column efficiency. This overestimation results in underestimated column dimensions at pilot and industrial scale, and hence underperformance of the industrial system.


Asunto(s)
Cromatografía Liquida/instrumentación , Cromatografía Liquida/métodos , Modelos Teóricos , Cinética
4.
Biotechnol Bioeng ; 70(4): 411-20, 2000 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-11005923

RESUMEN

In this article, the enzymatic production of oligosaccharides, which is an example of a kinetically controlled reaction, is studied. The aim is to show that the product yield can be enhanced by continuous removal of oligosaccharides from the reaction mixture. The oligosaccharides were removed by adsorption on activated carbon. The absorption could be described by the multicomponent Langmuir isotherm with different maximum saturation constants for mono-, di-, and trisaccharides. The affinity for trisaccharides was larger (k(tri) = 3.52 l/g) than for di- (k(di) = 0.94 l/g) and monosaccharides (k(mono) = 0.11 l/g). A model combining kinetics, adsorption on activated carbon, and mass transfer in an adsorption column was developed. Model calculations for the batch process with removal showed a yield improvement of 23% compared to the batch process without removal. Experimentally, a yield improvement of 30% was obtained. Model calculations for the continuous process studied did not result in an increase of the yield. The advantages of removal were masked by the negative influence of recirculation and the relative large time between formation and removal.


Asunto(s)
Biotecnología/métodos , Oligosacáridos/síntesis química , Oligosacáridos/metabolismo , beta-Galactosidasa/metabolismo , Cinética , Modelos Químicos , beta-Galactosidasa/química
5.
J Biotechnol ; 62(2): 105-18, 1998 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-9706703

RESUMEN

Hydrophobic pollutants in waste gases are difficult to remove with the conventional biological treatment techniques because of the slow gas/water mass transfer rate. A two-stage system with a water-immiscible solvent as intermediate liquid was developed. This system consisted of a packed absorber for transfer of the model pollutant, ethene, from gas to solvent and a stirred-tank reactor (mixer) for solvent/water transfer and subsequent degradation by Mycobacterium parafortuitum. The solvent FC40, a perfluorocarbon, was recycled between these two compartments. The stability of the system was shown during a run of 10 days. The elimination efficiency was found to be a function of the solvent flow: 9% and 15% elimination were obtained at solvent flows of 6 x 10(-8) m3.s-1 and 11.3 x 10(-8) m3.s-1, respectively. Ethene removal remained constant at increasing solvent hold-ups up to 50% (v/v). In spite of the low elimination efficiencies caused by an inefficient use of the column, the feasibility of the system to remove ethene has been demonstrated. The system's performance was described by a steady-state mathematical model. Simulated ethene removal efficiencies agreed well with the experimental data. Based on this, the model was used to optimise the dimensions and operating conditions. Furthermore, the model was used to compare the performance of the combined system (PA/MS) with the performance of a similar system without solvent. It was found that the use of solvent as intermediate liquid can improve substantially the removal efficiency of hydrophobic gaseous pollutants compared with the system without solvent. This is dependent however, on the solubility of the pollutant in the solvent, on the dimensions of the system and on the operating conditions.


Asunto(s)
Reactores Biológicos , Contaminantes Ambientales , Etilenos/aislamiento & purificación , Gases/química , Solventes , Administración de Residuos/métodos , Absorción , Mycobacterium , Solubilidad , Residuos , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...