Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 4756, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553352

RESUMEN

Orientation columns exist in the primary visual cortex (V1) of cat and primates but not mouse. Intriguingly, some recent studies reported the presence of orientation and direction columns in the mouse superficial superior colliculus (sSC), while others reported a lack of columnar organization therein. Using in vivo calcium imaging of sSC in the awake mouse brain, we found that the presence of columns is highly stimulus dependent. Specifically, we observed orientation and direction columns formed by sSC neurons retinotopically mapped to the edge of grating stimuli. For both excitatory and inhibitory neurons in sSC, orientation selectivity can be induced by the edge with their preferred orientation perpendicular to the edge orientation. Furthermore, we found that this edge-induced orientation selectivity is associated with saliency encoding. These findings indicate that the tuning properties of sSC neurons are not fixed by circuit architecture but rather dependent on the spatiotemporal properties of the stimulus.


Asunto(s)
Colículos Superiores , Corteza Visual , Animales , Colículos Superiores/fisiología , Corteza Visual/fisiología , Estimulación Luminosa/métodos , Neuronas/fisiología , Calcio
2.
J Neurosci ; 35(7): 3112-23, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25698747

RESUMEN

Auditory cortex (AC) layer 5B (L5B) contains both corticocollicular neurons, a type of pyramidal-tract neuron projecting to the inferior colliculus, and corticocallosal neurons, a type of intratelencephalic neuron projecting to contralateral AC. Although it is known that these neuronal types have distinct roles in auditory processing and different response properties to sound, the synaptic and intrinsic mechanisms shaping their input-output functions remain less understood. Here, we recorded in brain slices of mouse AC from retrogradely labeled corticocollicular and neighboring corticocallosal neurons in L5B. Corticocollicular neurons had, on average, lower input resistance, greater hyperpolarization-activated current (Ih), depolarized resting membrane potential, faster action potentials, initial spike doublets, and less spike-frequency adaptation. In paired recordings between single L2/3 and labeled L5B neurons, the probabilities of connection, amplitude, latency, rise time, and decay time constant of the unitary EPSC were not different for L2/3→corticocollicular and L2/3→corticocallosal connections. However, short trains of unitary EPSCs showed no synaptic depression in L2/3→corticocollicular connections, but substantial depression in L2/3→corticocallosal connections. Synaptic potentials in L2/3→corticocollicular connections decayed faster and showed less temporal summation, consistent with increased Ih in corticocollicular neurons, whereas synaptic potentials in L2/3→corticocallosal connections showed more temporal summation. Extracellular L2/3 stimulation at two different rates resulted in spiking in L5B neurons; for corticocallosal neurons the spike rate was frequency dependent, but for corticocollicular neurons it was not. Together, these findings identify cell-specific intrinsic and synaptic mechanisms that divide intracortical synaptic excitation from L2/3 to L5B into two functionally distinct pathways with different input-output functions.


Asunto(s)
Corteza Auditiva/citología , Vías Auditivas/fisiología , Red Nerviosa/fisiología , Neuronas/clasificación , Neuronas/fisiología , Potenciales Sinápticos/fisiología , Animales , Animales Recién Nacidos , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Flavoproteínas/metabolismo , Antagonistas del GABA/farmacología , Técnicas In Vitro , Colículos Inferiores/citología , Masculino , Ratones , Ratones Endogámicos ICR , Modelos Neurológicos , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Piridazinas/farmacología , Quinoxalinas/farmacología , Potenciales Sinápticos/efectos de los fármacos , Valina/análogos & derivados , Valina/farmacología
3.
Elife ; 3: e05422, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25525751

RESUMEN

The motor cortex (M1) is classically considered an agranular area, lacking a distinct layer 4 (L4). Here, we tested the idea that M1, despite lacking a cytoarchitecturally visible L4, nevertheless possesses its equivalent in the form of excitatory neurons with input-output circuits like those of the L4 neurons in sensory areas. Consistent with this idea, we found that neurons located in a thin laminar zone at the L3/5A border in the forelimb area of mouse M1 have multiple L4-like synaptic connections: excitatory input from thalamus, largely unidirectional excitatory outputs to L2/3 pyramidal neurons, and relatively weak long-range corticocortical inputs and outputs. M1-L4 neurons were electrophysiologically diverse but morphologically uniform, with pyramidal-type dendritic arbors and locally ramifying axons, including branches extending into L2/3. Our findings therefore identify pyramidal neurons in M1 with the expected prototypical circuit properties of excitatory L4 neurons, and question the traditional assumption that motor cortex lacks this layer.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Motora/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Potenciales Sinápticos/fisiología , Adenoviridae/genética , Animales , Axones/fisiología , Axones/ultraestructura , Dendritas/fisiología , Dendritas/ultraestructura , Colorantes Fluorescentes , Vectores Genéticos , Ratones , Microesferas , Microtomía , Corteza Motora/ultraestructura , Células Piramidales/ultraestructura , Técnicas Estereotáxicas , Sinapsis/ultraestructura , Transmisión Sináptica , Tálamo/fisiología , Tálamo/ultraestructura , Técnicas de Cultivo de Tejidos
4.
J Neurosci ; 34(15): 5291-301, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24719107

RESUMEN

In a dynamic world, animals must adapt rapidly to changes in the meaning of environmental cues. Such changes can influence the neural representation of sensory stimuli. Previous studies have shown that associating a stimulus with a reward or punishment can modulate neural activity in the auditory cortex (AC) and its thalamic input, the medial geniculate body (MGB). However, it is not known whether changes in stimulus-action associations alone can also modulate neural responses in these areas. We designed a categorization task for rats in which the boundary that separated low- from high-frequency sounds varied several times within a behavioral session, thus allowing us to manipulate the action associated with some sounds without changing the associated reward. We developed a computational model that accounted for the rats' performance and compared predictions from this model with sound-evoked responses from single neurons in AC and MGB in animals performing this task. We found that the responses of 15% of AC neurons and 16% of MGB neurons were modulated by changes in stimulus-action association and that the magnitude of the modulation was comparable between the two brain areas. Our results suggest that the AC and thalamus play only a limited role in mediating changes in associations between acoustic stimuli and behavioral responses.


Asunto(s)
Corteza Auditiva/fisiología , Percepción Auditiva , Discriminación en Psicología , Cuerpos Geniculados/fisiología , Estimulación Acústica , Animales , Corteza Auditiva/citología , Potenciales Evocados Auditivos , Cuerpos Geniculados/citología , Modelos Neurológicos , Neuronas/fisiología , Ratas , Ratas Long-Evans , Recompensa , Sonido
5.
Neurophotonics ; 1(1)2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25553337

RESUMEN

Neurophotonics methods offer powerful ways to access neuronal signals and circuits. We highlight recent advances and current themes in this area, emphasizing tools for mapping, monitoring, and manipulating excitatory projection neurons and their synaptic circuits in mouse motor cortex.

6.
Neuron ; 75(2): 271-82, 2012 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-22841312

RESUMEN

Retinitis pigmentosa (RP) and age-related macular degeneration (AMD) are degenerative blinding diseases caused by the death of rods and cones, leaving the remainder of the visual system intact but largely unable to respond to light. Here, we show that AAQ, a synthetic small molecule photoswitch, can restore light sensitivity to the retina and behavioral responses in vivo in mouse models of RP, without exogenous gene delivery. Brief application of AAQ bestows prolonged light sensitivity on multiple types of retinal neurons, resulting in synaptically amplified responses and center-surround antagonism in arrays of retinal ganglion cells (RGCs). Intraocular injection of AAQ restores the pupillary light reflex and locomotory light avoidance behavior in mice lacking retinal photoreceptors, indicating reconstitution of light signaling to brain circuits. AAQ and related photoswitch molecules present a potential drug strategy for restoring retinal function in degenerative blinding diseases.


Asunto(s)
Compuestos Azo/uso terapéutico , Ceguera/tratamiento farmacológico , Fármacos Fotosensibilizantes/uso terapéutico , Compuestos de Amonio Cuaternario/uso terapéutico , Neuronas Retinianas/efectos de los fármacos , Retinitis Pigmentosa/tratamiento farmacológico , Animales , Compuestos Azo/farmacología , Ceguera/fisiopatología , Modelos Animales de Enfermedad , Ratones , Fármacos Fotosensibilizantes/farmacología , Compuestos de Amonio Cuaternario/farmacología , Neuronas Retinianas/fisiología , Retinitis Pigmentosa/fisiopatología
7.
Nat Methods ; 5(4): 331-8, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18311146

RESUMEN

Light-activated ion channels provide a precise and noninvasive optical means for controlling action potential firing, but the genes encoding these channels must first be delivered and expressed in target cells. Here we describe a method for bestowing light sensitivity onto endogenous ion channels that does not rely on exogenous gene expression. The method uses a synthetic photoisomerizable small molecule, or photoswitchable affinity label (PAL), that specifically targets K+ channels. PALs contain a reactive electrophile, enabling covalent attachment of the photoswitch to naturally occurring nucleophiles in K+ channels. Ion flow through PAL-modified channels is turned on or off by photoisomerizing PAL with different wavelengths of light. We showed that PAL treatment confers light sensitivity onto endogenous K+ channels in isolated rat neurons and in intact neural structures from rat and leech, allowing rapid optical regulation of excitability without genetic modification.


Asunto(s)
Potenciales de Acción/efectos de la radiación , Activación del Canal Iónico/efectos de la radiación , Neuronas , Canales de Potasio/metabolismo , Marcadores de Afinidad/química , Animales , Compuestos Azo/química , Células Cultivadas , Cerebelo/citología , Cerebelo/metabolismo , Cerebelo/efectos de la radiación , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/efectos de la radiación , Sanguijuelas , Neuronas/metabolismo , Neuronas/efectos de la radiación , Estimulación Luminosa , Fotoquímica , Compuestos de Amonio Cuaternario/química , Ratas
8.
Nat Neurosci ; 7(12): 1381-6, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15558062

RESUMEN

Neurons have ion channels that are directly gated by voltage, ligands and temperature but not by light. Using structure-based design, we have developed a new chemical gate that confers light sensitivity to an ion channel. The gate includes a functional group for selective conjugation to an engineered K(+) channel, a pore blocker and a photoisomerizable azobenzene. Long-wavelength light drives the azobenzene moiety into its extended trans configuration, allowing the blocker to reach the pore. Short-wavelength light generates the shorter cis configuration, retracting the blocker and allowing conduction. Exogenous expression of these channels in rat hippocampal neurons, followed by chemical modification with the photoswitchable gate, enables different wavelengths of light to switch action potential firing on and off. These synthetic photoisomerizable azobenzene-regulated K(+) (SPARK) channels allow rapid, precise and reversible control over neuronal firing, with potential applications for dissecting neural circuits and controlling activity downstream from sites of neural damage or degeneration.


Asunto(s)
Potenciales de Acción/fisiología , Canales Iónicos/fisiología , Neuronas/fisiología , Estimulación Luminosa/métodos , Animales , Células Cultivadas , Femenino , Hipocampo/fisiología , Activación del Canal Iónico/fisiología , Canales Iónicos/química , Ratas , Ratas Sprague-Dawley , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA