Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 585, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38902623

RESUMEN

BACKGROUND: Soybean establishes a mutualistic interaction with nitrogen-fixing rhizobacteria, acquiring most of its nitrogen requirements through symbiotic nitrogen fixation. This crop is susceptible to water deficit; evidence suggests that its nodulation status-whether it is nodulated or not-can influence how it responds to water deficit. The translational control step of gene expression has proven relevant in plants subjected to water deficit. RESULTS: Here, we analyzed soybean roots' differential responses to water deficit at transcriptional, translational, and mixed (transcriptional + translational) levels. Thus, the transcriptome and translatome of four combined-treated soybean roots were analyzed. We found hormone metabolism-related genes among the differentially expressed genes (DEGs) at the translatome level in nodulated and water-restricted plants. Also, weighted gene co-expression network analysis followed by differential expression analysis identified gene modules associated with nodulation and water deficit conditions. Protein-protein interaction network analysis was performed for subsets of mixed DEGs of the modules associated with the plant responses to nodulation, water deficit, or their combination. CONCLUSIONS: Our research reveals that the stand-out processes and pathways in the before-mentioned plant responses partially differ; terms related to glutathione metabolism and hormone signal transduction (2 C protein phosphatases) were associated with the response to water deficit, terms related to transmembrane transport, response to abscisic acid, pigment metabolic process were associated with the response to nodulation plus water deficit. Still, two processes were common: galactose metabolism and branched-chain amino acid catabolism. A comprehensive analysis of these processes could lead to identifying new sources of tolerance to drought in soybean.


Asunto(s)
Glycine max , Raíces de Plantas , Transcriptoma , Glycine max/genética , Glycine max/fisiología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Nodulación de la Raíz de la Planta/genética , Redes Reguladoras de Genes , Perfilación de la Expresión Génica , Deshidratación
3.
Antioxidants (Basel) ; 11(8)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36009341

RESUMEN

Soybean (Glycine max (L.) Merr.) establishes symbiosis with rhizobacteria, developing the symbiotic nodule, where the biological nitrogen fixation (BNF) occurs. The redox control is key for guaranteeing the establishment and correct function of the BNF process. Plants have many antioxidative systems involved in ROS homeostasis and signaling, among them a network of thio- and glutaredoxins. Our group is particularly interested in studying the differential response of nodulated soybean plants to water-deficit stress. To shed light on this phenomenon, we set up an RNA-seq experiment (for total and polysome-associated mRNAs) with soybean roots comprising combined treatments including the hydric and the nodulation condition. Moreover, we performed the initial identification and description of the complete repertoire of thioredoxins (Trx) and glutaredoxins (Grx) in soybean. We found that water deficit altered the expression of a greater number of differentially expressed genes (DEGs) than the condition of plant nodulation. Among them, we identified 12 thioredoxin (Trx) and 12 glutaredoxin (Grx) DEGs, which represented a significant fraction of the detected GmTrx and GmGrx in our RNA-seq data. Moreover, we identified an enriched network in which a GmTrx and a GmGrx interacted with each other and associated through several types of interactions with nitrogen metabolism enzymes.

4.
J Vis Exp ; (185)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35848824

RESUMEN

The aim of this protocol is to provide a strategy for studying the eukaryotic translatome of the soybean (Glycine max) symbiotic nodule. This paper describes methods optimized to isolate plant-derived polyribosomes and their associated mRNAs to be analyzed using RNA-sequencing. First, cytoplasmic lysates are obtained through homogenization in polysome- and RNA-preserving conditions from whole, frozen soybean nodules. Then, lysates are cleared by low-speed centrifugation, and 15% of the supernatant is used for total RNA (TOTAL) isolation. The remaining cleared lysate is used to isolate polysomes by ultracentrifugation through a two-layer sucrose cushion (12% and 33.5%). Polysome-associated mRNA (PAR) is purified from polysomal pellets after resuspension. Both TOTAL and PAR are evaluated by highly sensitive capillary electrophoresis to meet the quality standards of sequencing libraries for RNA-seq. As an example of a downstream application, after sequencing, standard pipelines for gene expression analysis can be used to obtain differentially expressed genes at the transcriptome and translatome levels. In summary, this method, in combination with RNA-seq, allows the study of the translational regulation of eukaryotic mRNAs in a complex tissue such as the symbiotic nodule.


Asunto(s)
Glycine max , Biosíntesis de Proteínas , Polirribosomas/genética , Polirribosomas/metabolismo , ARN Mensajero/genética , RNA-Seq , Análisis de Secuencia de ARN , Glycine max/genética , Glycine max/metabolismo
5.
PeerJ ; 10: e11683, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35480565

RESUMEN

Background: Plant innate immunity relies on a broad repertoire of receptor proteins that can detect pathogens and trigger an effective defense response. Bioinformatic tools based on conserved domain and sequence similarity are within the most popular strategies for protein identification and characterization. However, the multi-domain nature, high sequence diversity and complex evolutionary history of disease resistance (DR) proteins make their prediction a real challenge. Here we present RFPDR, which pioneers the application of Random Forest (RF) for Plant DR protein prediction. Methods: A recently published collection of experimentally validated DR proteins was used as a positive dataset, while 10x10 nested datasets, ranging from 400-4,000 non-DR proteins, were used as negative datasets. A total of 9,631 features were extracted from each protein sequence, and included in a full dimension (FD) RFPDR model. Sequence selection was performed, to generate a reduced-dimension (RD) RFPDR model. Model performances were evaluated using an 80/20 (training/testing) partition, with 10-cross fold validation, and compared to baseline, sequence-based and state-of-the-art strategies. To gain some insights into the underlying biology, the most discriminatory sequence-based features in the RF classifier were identified. Results and Discussion: RD-RFPDR showed to be sensitive (86.4 ± 4.0%) and specific (96.9 ± 1.5%) for identifying DR proteins, while robust to data imbalance. Its high performance and robustness, added to the fact that RD-RFPDR provides valuable information related to DR proteins underlying properties, make RD-RFPDR an interesting approach for DR protein prediction, complementing the state-of-the-art strategies.


Asunto(s)
Proteínas de Plantas , Bosques Aleatorios , Proteínas de Plantas/genética , Resistencia a la Enfermedad , Secuencia de Aminoácidos , Plantas
6.
J Vis Exp ; (181)2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35435905

RESUMEN

A method is described here to characterize the physical properties of the cell wall of epidermal cells of living Arabidopsis roots through nanoindentations with an atomic force microscope (AFM) coupled with an optical inverted fluorescence microscope. The method consists of applying controlled forces to the sample while measuring its deformation, allowing quantifying parameters such as the apparent Young's modulus of cell walls at subcellular resolutions. It requires a careful mechanical immobilization of the sample and correct selection of indenters and indentation depths. Although it can be used only in external tissues, this method allows characterizing mechanical changes in plant cell walls during development and enables the correlation of these microscopic changes with the growth of an entire organ.


Asunto(s)
Arabidopsis , Módulo de Elasticidad , Células Epidérmicas , Microscopía de Fuerza Atómica/métodos , Raíces de Plantas
7.
Genes (Basel) ; 12(2)2021 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562207

RESUMEN

Mutations in the Arabidopsis TETRATRICOPEPTIDE THIOREDOXIN-LIKE 1 (TTL1) gene cause reduced tolerance to osmotic stress evidenced by an arrest in root growth and root swelling, which makes it an interesting model to explore how root growth is controlled under stress conditions. We found that osmotic stress reduced the growth rate of the primary root by inhibiting the cell elongation in the elongation zone followed by a reduction in the number of cortical cells in the proximal meristem. We then studied the stiffness of epidermal cell walls in the root elongation zone of ttl1 mutants under osmotic stress using atomic force microscopy. In plants grown in control conditions, the mean apparent elastic modulus was 448% higher for live Col-0 cell walls than for ttl1 (88.1 ± 2.8 vs. 16.08 ± 6.9 kPa). Seven days of osmotic stress caused an increase in the stiffness in the cell wall of the cells from the elongation zone of 87% and 84% for Col-0 and ttl1, respectively. These findings suggest that TTL1 may play a role controlling cell expansion orientation during root growth, necessary for osmotic stress adaptation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Raíces de Plantas/genética , Estrés Fisiológico/genética , Aclimatación/genética , Adaptación Fisiológica/genética , Anisotropía , Arabidopsis/crecimiento & desarrollo , Pared Celular/genética , Regulación de la Expresión Génica de las Plantas/genética , Meristema/genética , Meristema/crecimiento & desarrollo , Presión Osmótica , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo
8.
Physiol Plant ; 172(2): 564-576, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33159328

RESUMEN

Drought is the main cause of productivity losses in soybean plants, triggering physiological and biochemical responses, stomatal closure being essential to prevent water losses and thus mitigate the negative effects of drought. Abscisic acid (ABA) is the main molecule involved in stomatal closure under drought conditions along with nitric oxide (• NO). However, the role of • NO in this process is not yet fully understood and contrasting findings about its role have been reported. Most of the assays in the literature have been carried out under in vitro conditions using • NO donors or scavengers, but little is known about the effects of endogenously produced • NO under drought conditions. This study is aimed to determine the pattern of endogenous • NO accumulation from the establishment of water stress and how this relates to stomatal closure and other biochemical and physiological responses. The analysis of soybean plant responses to drought revealed no correlation between whole-leaf • NO accumulation and typical water-deficit stress markers. Moreover, • NO accumulation did not explain oxidative damage induced by drought. However, endogenous • NO content correlated with the early stomatal closure. Analysis of stomatal behavior and endogenous • NO content in guard cells through epidermal peel technique showed a stomatal population with high variation in stomatal opening and • NO content under the initial stages of water stress, even when ABA responses are activated. Our data suggest that upon early stress perception, soybean plants respond by accumulating • NO in the guard cells to inhibit stomatal closure, potentially through the inhibition of ABA responses.


Asunto(s)
Glycine max , Estomas de Plantas , Ácido Abscísico , Sequías , Óxido Nítrico , Agua
9.
Photosynth Res ; 150(1-3): 97-115, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32072456

RESUMEN

The photosynthesis process is determined by the intensity level and spectral quality of the light; therefore, leaves need to adapt to a changing environment. The incident energy absorbed can exceed the sink capability of the photosystems, and, in this context, photoinhibition may occur in both photosystem II (PSII) and photosystem I (PSI). Quantum yield parameters analyses reveal how the energy is managed. These parameters are genotype-dependent, and this genotypic variability is a good opportunity to apply mapping association strategies to identify genomic regions associated with photosynthesis energy partitioning. An experimental and mathematical approach is proposed for the determination of an index which estimates the energy per photon flux for each spectral bandwidth (Δλ) of the light incident (QI index). Based on the QI, the spectral quality of the plant growth, environmental lighting, and the actinic light of PAM were quantitatively very similar which allowed an accurate phenotyping strategy of a rice population. A total of 143 genomic single regions associated with at least one trait of chlorophyll fluorescence were identified. Moreover, chromosome 5 gathers most of these regions indicating the importance of this chromosome in the genetic regulation of the photochemistry process. Through a GWAS strategy, 32 genes of rice genome associated with the main parameters of the photochemistry process of photosynthesis in rice were identified. Association between light-harvesting complexes and the potential quantum yield of PSII, as well as the relationship between coding regions for PSI-linked proteins in energy distribution during the photochemical process of photosynthesis is analyzed.


Asunto(s)
Clorofila , Estudio de Asociación del Genoma Completo , Luz , Fotosíntesis/genética , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo
10.
Plant Cell ; 31(8): 1807-1828, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31189737

RESUMEN

Brassinosteroids (BRs) form a group of steroidal hormones essential for plant growth, development, and stress responses. BRs are perceived extracellularly by plasma membrane receptor-like kinases that activate an interconnected signal transduction cascade, leading to the transcriptional regulation of BR-responsive genes. TETRATRICOPEPTIDE THIOREDOXIN-LIKE (TTL) genes are specific for land plants, and their encoded proteins are defined by the presence of protein-protein interaction motives, that is, an intrinsic disordered region at the N terminus, six tetratricopeptide repeat domains, and a C terminus with homology to thioredoxins. TTL proteins thus likely mediate the assembly of multiprotein complexes. Phenotypic, molecular, and genetic analyses show that TTL proteins are positive regulators of BR signaling in Arabidopsis (Arabidopsis thaliana). TTL3 directly interacts with a constitutively active BRASSINOSTEROID INSENSITIVE1 (BRI1) receptor kinase, BRI1-SUPPRESSOR1 phosphatase, and the BRASSINAZOLE RESISTANT1 transcription factor and associates with BR-SIGNALING KINASE1, BRASSINOSTEROID INSENSITIVE2 kinases, but not with BRI1-ASSOCIATED KINASE1. A functional TTL3-green fluorescent protein (GFP) shows dual cytoplasmic plasma membrane localization. Depleting the endogenous BR content reduces plasma membrane localization of TTL3-GFP, while increasing BR content causes its plasma membrane relocalization, where it strengthens the association of BR signaling components. Our results reveal that TTL proteins promote BR responses and suggest that TTL proteins may function as scaffold proteins by bringing together cytoplasmic and plasma membrane BR signaling components.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Arabidopsis/genética , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de la Membrana/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
11.
Photosynth Res ; 140(1): 51-63, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30448978

RESUMEN

One of the main limitations of rice yield in regions of high productive performance is the light-use efficiency (LUE). LUE can be determined at the whole-plant level or at the photosynthetic apparatus level (quantum yield). Both vary according to the intensity and spectral quality of light. The aim of this study was to analyze the cultivar dependence regarding LUE at the plant level and quantum yield using four rice cultivars and four light environments. To achieve this, two in-house Light Systems were developed: Light System I which generates white light environments (spectral quality of 400-700 nm band) and Light System II which generates a blue-red light environment (spectral quality of 400-500 nm and 600-700 nm bands). Light environment conditioned the LUE and quantum yield in PSII of all evaluated cultivars. In white environments, LUE decreased when light intensity duplicated, while in blue-red environments no differences on LUE were observed. Energy partition in PSII was determined by the quantum yield of three de-excitation processes using chlorophyll fluorescence parameters. For this purpose, a quenching analysis followed by a relaxation analysis was performed. The damage of PSII was only increased by low levels of energy in white environments, leading to a decrease in photochemical processes due to the closure of the reaction centers. In conclusion, all rice cultivars evaluated in this study were sensible to low levels of radiation, but the response was cultivar dependent. There was not a clear genotypic relation between LUE and quantum yield.


Asunto(s)
Metabolismo Energético , Oryza/fisiología , Fotosíntesis/efectos de la radiación , Luz , Oryza/efectos de la radiación , Procesos Fotoquímicos , Fotones , Especificidad de la Especie
12.
Front Plant Sci ; 9: 262, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29552022

RESUMEN

Water is usually the main limiting factor for soybean productivity worldwide and yet advances in genetic improvement for drought resistance in this crop are still limited. In the present study, we investigated the physiological and molecular responses to drought in two soybean contrasting genotypes, a slow wilting N7001 and a drought sensitive TJS2049 cultivars. Measurements of stomatal conductance, carbon isotope ratios and accumulated dry matter showed that N7001 responds to drought by employing mechanisms resulting in a more efficient water use than TJS2049. To provide an insight into the molecular mechanisms that these cultivars employ to deal with water stress, their early and late transcriptional responses to drought were analyzed by suppression subtractive hybridization. A number of differentially regulated genes from N7001 were identified and their expression pattern was compared between in this genotype and TJS2049. Overall, the data set indicated that N7001 responds to drought earlier than TJ2049 by up-regulating a larger number of genes, most of them encoding proteins with regulatory and signaling functions. The data supports the idea that at least some of the phenotypic differences between slow wilting and drought sensitive plants may rely on the regulation of the level and timing of expression of specific genes. One of the genes that exhibited a marked N7001-specific drought induction profile encoded a eukaryotic translation initiation factor iso4G (GmeIFiso4G-1a). GmeIFiso4G-1a is one of four members of this protein family in soybean, all of them sharing high sequence identity with each other. In silico analysis of GmeIFiso4G-1 promoter sequences suggested a possible functional specialization between distinct family members, which can attain differences at the transcriptional level. Conditional overexpression of GmeIFiso4G-1a in Arabidopsis conferred the transgenic plants increased tolerance to osmotic, salt, drought and low temperature stress, providing a strong experimental evidence for a direct association between a protein of this class and general abiotic stress tolerance mechanisms. Moreover, the results of this work reinforce the importance of the control of protein synthesis as a central mechanism of stress adaptation and opens up for new strategies for improving crop performance under stress.

13.
Plant Physiol Biochem ; 119: 224-231, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28910707

RESUMEN

Biological membranes allow the regulation of numerous cellular processes, which are affected when unfavorable environmental factors are perceived. Lipids and proteins are the principal components of biological membranes. Each lipid has unique biophysical properties, and, therefore the lipid composition of the membrane is critical to maintaining the bilayer structure and functionality. Membrane composition and integrity are becoming the focus of studies aiming to understand how plants adapt to its environment. In this study, using a combination of di-4-ANEPPDHQ fluorescence and spectral phasor analysis, we report that the drought hypersensitive/squalene epoxidase (dry2/sqe1-5) mutant with reduced major sterols such as sitosterol and stigmasterol in roots presented higher membrane fluidity than the wild type. Moreover, analysis of endomembrane dynamics showed that vesicle formation was affected in dry2/sqe1-5. Further analysis of proteins associated with sterol rich micro domains showed that dry2/sqe1-5 presented micro domains function altered.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Fluidez de la Membrana , Raíces de Plantas/metabolismo , Escualeno-Monooxigenasa/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/genética , Deshidratación/metabolismo , Raíces de Plantas/genética , Sitoesteroles/metabolismo , Escualeno-Monooxigenasa/genética , Estigmasterol/metabolismo
14.
Plant Physiol Biochem ; 108: 231-240, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27466716

RESUMEN

Cyanobacteria are successful in diverse habitats due to their adaptation strategies. Their mechanisms to cope with individual stresses have been studied. However, the response to combined stress conditions as found in nature remains unclear. With this aim, we studied the dual effect of 24h-osmotic and 3h-UV irradiation on the cyanobacterium Calothrix BI22. Our approach included the study of redox homeostasis, oxidative damage, reactive oxygen species production-consumption processes and photosynthetic activity. Superoxide in vivo determination with confocal image processing showed the highest accumulation under UV. However, no lipoperoxidation occurred due to a high SOD activity. This cyanobacterium was less prepared to cope with the osmotic stress assayed. Under this condition, O2 photoevolution decreased abruptly and oxidative damage was produced by reactive species other than superoxide. In this situation the cellular control of the amount of ROS failed to prevent oxidative damage and photosynthesis was seriously disturbed in spite of maximum quantum photosynthetic efficiency remained unchanged. Calothrix BI22 presented the more severe oxidative damage when both stressors were applied. The osmotic stress disentangled the mechanisms developed by this cyanobacterium to deal with 3h-UV irradiation alone.


Asunto(s)
Cianobacterias/fisiología , Cianobacterias/efectos de la radiación , Presión Osmótica , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Proteínas Bacterianas/metabolismo , Enzimas/metabolismo , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo/efectos de la radiación , Peroxidasas/metabolismo , Prolina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Rayos Ultravioleta
15.
Funct Plant Biol ; 43(9): 870-879, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32480511

RESUMEN

Plants accumulate proline under diverse types of stresses, and it has been suggested that this α-amino acid has the capacity to protect against oxidative stress. However, it is still controversial whether its protection is due to the direct scavenging of reactive oxygen species (ROS). To solve this issue and considering that nitrosative stress is directly related with an oxidative stress condition, we evaluated whether proline can protect against nitrosative damage. Using proteins of Lotus japonicus (Regel) K.Larsen leaves exposed to a peroxynitrite (ONOO-/ONOOH) generator in presence and absence of 100mM proline, the potential of proline to protect was analysed by the protein nitration profile and NADP-dependent isocitrate dehydrogenase activity, which is inhibited by nitration. In both cases, the presence of proline did not diminish the peroxynitrite effects. Additionally, proline biosynthesis Arabidopsis knockout (KO) mutant plants of Δ(1)-pyrroline-5-carboxylate synthetase1 (P5CS1) gene, designated as Atp5cs1-1 and Atp5cs1-4, showed similar protein nitration levels as wild-type plants under salinity-induced oxidative stress, despite mutants having higher levels of lipid oxidation, H2O2 and superoxide (O2·-). Finally, by a fluorometric assay using specific fluorescent probes, it was determined that the presence of 100mM proline did not affect the time-course content of peroxynitrite or nitric oxide generation in vitro. Our results reveal the relevance of proline accumulation in vivo under stress, but unequivocally demonstrate that proline is not a direct scavenger of peroxynitrite, superoxide, ·NO and nitrogen dioxide (·NO2).

16.
PLoS One ; 10(3): e0115349, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25775459

RESUMEN

The accumulation of proline (Pro) in plants exposed to biotic/abiotic stress is a well-documented and conserved response in most vegetal species. Stress conditions induce the overproduction of reactive oxygen species which can lead to cellular damage. In vitro assays have shown that enzyme inactivation by hydroxyl radicals (·OH) can be avoided in presence of Pro, suggesting that this amino acid could act as an ·OH scavenger. We applied Density Functional Theory coupled with a polarizable continuum model to elucidate how Pro reacts with ·OH. In this work we suggest that Pro reacts favourably with ·OH by H-abstraction on the amine group. This reaction produces the spontaneous decarboxylation of Pro leading to the formation of pyrrolidin-1-yl. In turn, pyrrolidin-1-yl can easily be converted to Δ1-pyrroline, the substrate of the enzyme Δ1-pyrroline dehydrogenase, which produces γ-aminobutyric acid (GABA). GABA and Pro are frequently accumulated in stressed plants and several protective roles have been assigned to these molecules. Thereby we present an alternative non-enzymatic way to synthetize GABA under oxidative stress. Finally this work sheds light on a new beneficial role of Pro accumulation in the maintenance of photosynthetic activity.


Asunto(s)
Estrés Oxidativo , Plantas/metabolismo , Prolina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Aminas/metabolismo , Radical Hidroxilo/metabolismo , Radical Hidroxilo/farmacología , Modelos Moleculares , Conformación Molecular , Estrés Oxidativo/efectos de los fármacos , Plantas/efectos de los fármacos , Prolina/química , Ácido gamma-Aminobutírico/química
17.
J Phys Chem B ; 118(1): 37-47, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24328335

RESUMEN

The accumulation of proline (Pro) and overproduction of reactive oxygen species (ROS) by plants exposed to stress is well-documented. In vitro assays show that enzyme inactivation by hydroxyl radicals ((•)OH) can be avoided in the presence of Pro, suggesting this amino acid might act as a (•)OH scavenger. Although production of hydroxyproline (Hyp) has been hypothesized in connection with such antioxidant activity, no evidence on the detailed mechanism of scavenging has been reported. To elucidate whether and how Hyp might be produced, we used density functional theory calculations coupled to a polarizable continuum model to explore 27 reaction channels including H-abstraction by (•)OH and (•)OH/H2O addition. The structure and energetics of stable species and transition states for each reaction channel were characterized at the PCM-(U)M06/6-31G(d,p) level in aqueous solution. Evidence is found for a main pathway in which Pro scavenges (•)OH by successive H-abstractions (ΔG(‡,298) = 4.1 and 7.5 kcal mol(-1)) to yield 3,4-Δ-Pro. A companion pathway with low barriers yielding Δ(1)-pyrroline-5-carboxylate (P5C) is also supported, linking with 5-Hyp through hydration. However, this connection remains unlikely in stressed plants because P5C would be efficiently recycled to Pro (contributing to its accumulation) by P5C reductase, hypothesis coined here as the "Pro-Pro cycle".


Asunto(s)
Depuradores de Radicales Libres/metabolismo , Radical Hidroxilo/metabolismo , Plantas/metabolismo , Prolina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Depuradores de Radicales Libres/química , Radical Hidroxilo/química , Plantas/química , Prolina/química , Teoría Cuántica , Especies Reactivas de Oxígeno/química , Termodinámica
18.
Plant Physiol Biochem ; 70: 195-203, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23792824

RESUMEN

Identification of metabolic targets of environmental stress factors is critical to improve the stress tolerance of plants. Studying the biochemical and physiological responses of plants with different capacities to deal with stress is a valid approach to reach this objective. Lotus corniculatus (lotus) and Trifolium pratense (clover) are legumes with contrasting summer stress tolerances. In stress conditions, which are defined as drought, heat or a combination of both, we found that differential biochemical responses of leaves explain these behaviours. Lotus and clover showed differences in water loss control, proline accumulation and antioxidant enzymatic capacity. Drought and/or heat stress induced a large accumulation of proline in the tolerant species (lotus), whereas heat stress did not cause proline accumulation in the sensitive species (clover). In lotus, Mn-SOD and Fe-SOD were induced by drought, but in clover, the SOD-isoform profile was not affected by stress. Moreover, lotus has more SOD-isoforms and a higher total SOD activity than clover. The functionality and electrophoretic profile of photosystem II (PSII) proteins under stress also exhibited differences between the two species. In lotus, PSII activity was drastically affected by combined stress and, interestingly, was correlated with D2 protein degradation. Possible implications of this event as an adaption mechanism in tolerant species are discussed. We conclude that the stress-tolerant capability of lotus is related to its ability to respond to oxidative damage and adaption of the photosynthetic machinery. This reveals that these two aspects should be included in the evaluation of the tolerance of species to stress conditions.


Asunto(s)
Adaptación Fisiológica , Sequías , Calor , Lotus/fisiología , Oxidorreductasas/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Trifolium/fisiología , Antioxidantes , Lotus/enzimología , Lotus/metabolismo , Proteínas de Plantas/metabolismo , Prolina/metabolismo , Estrés Fisiológico , Superóxido Dismutasa/metabolismo , Trifolium/enzimología , Trifolium/metabolismo , Agua
19.
Plant Physiol Biochem ; 64: 80-3, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23384940

RESUMEN

Plants are commonly subjected to several environmental stresses that lead to an overproduction of reactive oxygen species (ROS). As plants accumulate proline in response to stress conditions, some authors have proposed that proline could act as a non-enzymatic antioxidant against ROS. One type of ROS aimed to be quenched by proline is singlet oxygen ((1)O(2))-molecular oxygen in its lowest energy electronically excited state-constitutively generated in oxygenic, photosynthetic organisms. In this study we clearly prove that proline cannot quench (1)O(2) in aqueous buffer, giving rise to a rethinking about the antioxidant role of proline against (1)O(2).


Asunto(s)
Antioxidantes/metabolismo , Estrés Oxidativo , Plantas/metabolismo , Prolina/metabolismo , Oxígeno Singlete/metabolismo
20.
Plant Cell ; 25(2): 728-43, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23404890

RESUMEN

The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme catalyzes the major rate-limiting step of the mevalonic acid (MVA) pathway from which sterols and other isoprenoids are synthesized. In contrast with our extensive knowledge of the regulation of HMGR in yeast and animals, little is known about this process in plants. To identify regulatory components of the MVA pathway in plants, we performed a genetic screen for second-site suppressor mutations of the Arabidopsis thaliana highly drought-sensitive drought hypersensitive2 (dry2) mutant that shows decreased squalene epoxidase activity. We show that mutations in SUPPRESSOR OF DRY2 DEFECTS1 (SUD1) gene recover most developmental defects in dry2 through changes in HMGR activity. SUD1 encodes a putative E3 ubiquitin ligase that shows sequence and structural similarity to yeast Degradation of α factor (Doα10) and human TEB4, components of the endoplasmic reticulum-associated degradation C (ERAD-C) pathway. While in yeast and animals, the alternative ERAD-L/ERAD-M pathway regulates HMGR activity by controlling protein stability, SUD1 regulates HMGR activity without apparent changes in protein content. These results highlight similarities, as well as important mechanistic differences, among the components involved in HMGR regulation in plants, yeast, and animals.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hidroximetilglutaril-CoA Reductasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Humanos , Proteínas de la Membrana/genética , Ácido Mevalónico/metabolismo , Mutación , Fenotipo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Esteroles/metabolismo , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA