Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep Med ; 2(4): 100240, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33948573

RESUMEN

Essential E3 ubiquitin ligase HUWE1 (HECT, UBA, and WWE domain containing 1) regulates key factors, such as p53. Although mutations in HUWE1 cause heterogenous neurodevelopmental X-linked intellectual disabilities (XLIDs), the disease mechanisms common to these syndromes remain unknown. In this work, we identify p53 signaling as the central process altered in HUWE1-promoted XLID syndromes. By focusing on Juberg-Marsidi syndrome (JMS), one of the severest XLIDs, we show that increased p53 signaling results from p53 accumulation caused by HUWE1 p.G4310R destabilization. This further alters cell-cycle progression and proliferation in JMS cells. Modeling of JMS neurodevelopment reveals majorly impaired neural differentiation accompanied by increased p53 signaling. The neural differentiation defects can be successfully rescued by reducing p53 levels and restoring the expression of p53 target genes, in particular CDKN1A/p21. In summary, our findings suggest that increased p53 signaling underlies HUWE1-promoted syndromes and impairs XLID JMS neural differentiation.


Asunto(s)
Diferenciación Celular/genética , Discapacidad Intelectual/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Diferenciación Celular/fisiología , Genes Ligados a X/genética , Humanos , Mutación/genética
2.
Sci Rep ; 8(1): 6010, 2018 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-29651030

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

3.
Sci Rep ; 7(1): 15050, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118367

RESUMEN

Mutations in the HECT, UBA and WWE domain-containing 1 (HUWE1) E3 ubiquitin ligase cause neurodevelopmental disorder X-linked intellectual disability (XLID). HUWE1 regulates essential processes such as genome integrity maintenance. Alterations in the genome integrity and accumulation of mutations have been tightly associated with the onset of neurodevelopmental disorders. Though HUWE1 mutations are clearly implicated in XLID and HUWE1 regulatory functions well explored, currently much is unknown about the molecular basis of HUWE1-promoted XLID. Here we showed that the HUWE1 expression is altered and mutation frequency increased in three different XLID individual (HUWE1 p.R2981H, p.R4187C and HUWE1 duplication) cell lines. The effect was most prominent in HUWE1 p.R4187C XLID cells and was accompanied with decreased DNA repair capacity and hypersensitivity to oxidative stress. Analysis of HUWE1 substrates revealed XLID-specific down-regulation of oxidative stress response DNA polymerase (Pol) λ caused by hyperactive HUWE1 p.R4187C. The subsequent restoration of Polλ levels counteracted the oxidative hypersensitivity. The observed alterations in the genome integrity maintenance may be particularly relevant in the cortical progenitor zones of human brain, as suggested by HUWE1 immunofluorescence analysis of cerebral organoids. These results provide evidence that impairments of the fundamental cellular processes, like genome integrity maintenance, characterize HUWE1-promoted XLID.


Asunto(s)
Genes Ligados a X , Discapacidad Intelectual/genética , Estrés Oxidativo , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Línea Celular , ADN Polimerasa beta/metabolismo , Reparación del ADN/genética , Inestabilidad Genómica/genética , Humanos , Discapacidad Intelectual/patología , Mutación
4.
Blood ; 130(13): 1523-1534, 2017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28827409

RESUMEN

Endogenous DNA damage is causally associated with the functional decline and transformation of stem cells that characterize aging. DNA lesions that have escaped DNA repair can induce replication stress and genomic breaks that induce senescence and apoptosis. It is not clear how stem and proliferating cells cope with accumulating endogenous DNA lesions and how these ultimately affect the physiology of cells and tissues. Here we have addressed these questions by investigating the hematopoietic system of mice deficient for Rev1, a core factor in DNA translesion synthesis (TLS), the postreplicative bypass of damaged nucleotides. Rev1 hematopoietic stem and progenitor cells displayed compromised proliferation, and replication stress that could be rescued with an antioxidant. The additional disruption of Xpc, essential for global-genome nucleotide excision repair (ggNER) of helix-distorting nucleotide lesions, resulted in the perinatal loss of hematopoietic stem cells, progressive loss of bone marrow, and fatal aplastic anemia between 3 and 4 months of age. This was associated with replication stress, genomic breaks, DNA damage signaling, senescence, and apoptosis in bone marrow. Surprisingly, the collapse of the Rev1Xpc bone marrow was associated with progressive mitochondrial dysfunction and consequent exacerbation of oxidative stress. These data reveal that, to protect its genomic and functional integrity, the hematopoietic system critically depends on the combined activities of repair and replication of helix-distorting oxidative nucleotide lesions by ggNER and Rev1-dependent TLS, respectively. The error-prone nature of TLS may provide mechanistic understanding of the accumulation of mutations in the hematopoietic system upon aging.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , Sistema Hematopoyético/fisiología , Estrés Oxidativo , Animales , Apoptosis , Médula Ósea/patología , Proliferación Celular , Senescencia Celular/genética , ADN Polimerasa Dirigida por ADN , Genoma , Células Madre Hematopoyéticas/patología , Ratones , Nucleotidiltransferasas
5.
BMJ Open ; 6(4): e009537, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-27130160

RESUMEN

BACKGROUND: X linked intellectual disability (XLID) syndromes account for a substantial number of males with ID. Much progress has been made in identifying the genetic cause in many of the syndromes described 20-40 years ago. Next generation sequencing (NGS) has contributed to the rapid discovery of XLID genes and identifying novel mutations in known XLID genes for many of these syndromes. METHODS: 2 NGS approaches were employed to identify mutations in X linked genes in families with XLID disorders. 1 involved exome sequencing of genes on the X chromosome using the Agilent SureSelect Human X Chromosome Kit. The second approach was to conduct targeted NGS sequencing of 90 known XLID genes. RESULTS: We identified the same mutation, a c.12928 G>C transversion in the HUWE1 gene, which gives rise to a p.G4310R missense mutation in 2 XLID disorders: Juberg-Marsidi syndrome (JMS) and Brooks syndrome. Although the original families with these disorders were considered separate entities, they indeed overlap clinically. A third family was also found to have a novel HUWE1 mutation. CONCLUSIONS: As we identified a HUWE1 mutation in an affected male from the original family reported by Juberg and Marsidi, it is evident the syndrome does not result from a mutation in ATRX as reported in the literature. Additionally, our data indicate that JMS and Brooks syndromes are allelic having the same HUWE1 mutation.


Asunto(s)
Cromosomas Humanos X/genética , Sordera/genética , Trastornos del Crecimiento/genética , Hipogonadismo/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Espasticidad Muscular/genética , Ubiquitina-Proteína Ligasas/genética , Adolescente , Adulto , Niño , Exoma , Facies , Enfermedades Genéticas Ligadas al Cromosoma X , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Discapacidad Intelectual , Masculino , Megalencefalia , Persona de Mediana Edad , Mutación , Proteínas Supresoras de Tumor , Adulto Joven
6.
Int J Mol Sci ; 13(12): 16172-222, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-23203191

RESUMEN

Relatively low levels of antioxidant enzymes and high oxygen metabolism result in formation of numerous oxidized DNA lesions in the tissues of the central nervous system. Accumulation of damage in the DNA, due to continuous genotoxic stress, has been linked to both aging and the development of various neurodegenerative disorders. Different DNA repair pathways have evolved to successfully act on damaged DNA and prevent genomic instability. The predominant and essential DNA repair pathway for the removal of small DNA base lesions is base excision repair (BER). In this review we will discuss the current knowledge on the involvement of BER proteins in the maintenance of genetic stability in different brain regions and how changes in the levels of these proteins contribute to aging and the onset of neurodegenerative disorders.


Asunto(s)
Sistema Nervioso Central/fisiología , Reparación del ADN/fisiología , Enfermedades Neurodegenerativas/genética , Envejecimiento/genética , Animales , Sistema Nervioso Central/patología , Daño del ADN/fisiología , Inestabilidad Genómica/fisiología , Humanos , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Enfermedades Neurodegenerativas/patología , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo
7.
Nat Cell Biol ; 13(11): 1376-82, 2011 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-22020440

RESUMEN

Unrepaired DNA double-strand breaks (DSBs) cause genetic instability that leads to malignant transformation or cell death. Cells respond to DSBs with the ordered recruitment of signalling and repair proteins to the site of lesion. Protein modification with ubiquitin is crucial for the signalling cascade, but how ubiquitylation coordinates the dynamic assembly of these complexes is poorly understood. Here, we show that the human ubiquitin-selective protein segregase p97 (also known as VCP; valosin-containing protein) cooperates with the ubiquitin ligase RNF8 to orchestrate assembly of signalling complexes and efficient DSB repair after exposure to ionizing radiation. p97 is recruited to DNA lesions by its ubiquitin adaptor UFD1-NPL4 and Lys-48-linked ubiquitin (K48-Ub) chains, whose formation is regulated by RNF8. p97 subsequently removes K48-Ub conjugates from sites of DNA damage to orchestrate proper association of 53BP1, BRCA1 and RAD51, three factors critical for DNA repair and genome surveillance mechanisms. Impairment of p97 activity decreases the level of DSB repair and cell survival after exposure to ionizing radiation. These findings identify the p97-UFD1-NPL4 complex as an essential factor in ubiquitin-governed DNA-damage response, highlighting its importance in guarding genome stability.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Procesamiento Proteico-Postraduccional , Proteínas Adaptadoras del Transporte Vesicular , Adenosina Trifosfatasas/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Núcleo Celular/efectos de la radiación , Supervivencia Celular , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta en la Radiación , Inestabilidad Genómica , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Transporte de Proteínas , Proteínas/metabolismo , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitina-Proteína Ligasas , Ubiquitinación , Proteína que Contiene Valosina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...