Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(30): 20365-20372, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37465906

RESUMEN

Photodissociation of the CH2I radical and the CH2I+ cation is studied by means of high-level ab initio calculations, including spin-orbit effects. Potential-energy curves (PEC) along the dissociating bond distances involved in some fragmentation pathways of these species are computed for the ground and several excited electronic states. Based on the PECs obtained, the possible photodissociation mechanisms are analyzed and suggested. Significant differences are found between the fragmentation dynamics of the neutral radical and that of the cation. While a relatively simple dissociation dynamics is predicted for CH2I, more complex fragmentation mechanisms involving internal conversion and couplings between different excited electronic states are expected for CH2I+. The species studied here are relevant to atmospheric chemistry, and the present work can help to understand better how their photodissociation may affect chemical processes in the atmosphere.

2.
Phys Chem Chem Phys ; 24(12): 7387-7395, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35266503

RESUMEN

Photodissociation of the vinyl radical through pathways CH2CH → CH2C + H, CH2CH → CHCH + H, and CH2CH → CH2 + CH is investigated by means of high-level ab initio calculations. Potential-energy curves (PECs) along the corresponding dissociating bond distance associated with the ground and several excited electronic states involved in the above fragmentation pathways, as well as the nonadiabatic couplings connecting the different states, are obtained. The findings of several experiments on vinyl photodissociation performed at different excitation wavelengths are analyzed and explained qualitatively in the light of the present PECs. A two-dimensional representation (consisting of radial and angular coordinates to represent one of the H atoms of the CH2 group) is also used to calculate the electronic states. The surfaces obtained reflect a rich variety of conical intersections, exit barriers, and nonadiabatic couplings leading to predissociation in different regions of energy and of the two coordinates, suggesting a complex photodissociation dynamics of the CH2CH → CHCH + H pathway, with rather different fragmentation mechanisms involved. The two-dimensional results also provide interesting information on the mechanism of in-plane hydrogen migration from the CH2 group to the CH one through a high-lying transition state.

3.
Phys Chem Chem Phys ; 19(46): 31245-31254, 2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29143005

RESUMEN

The electronic states and the spin-orbit couplings between them involved in the photodissociation process of the radical molecules CH3X, CH3X → CH3 + X (X = O, S), taking place after the Ã(2A1) ← X[combining tilde](2E) transition, have been investigated using highly correlated ab initio techniques. A two-dimensional representation of both the potential-energy surfaces (PESs) and the couplings is generated. This description includes the C-X dissociative mode and the CH3 umbrella mode. Spin-orbit effects are found to play a relevant role in the shape of the excited state potential-energy surfaces, particularly in the CH3S case where the spin-orbit couplings are more than twice more intense than in CH3O. The potential surfaces and couplings reported here for the present set of electronic states allow for the first complete description of the above photodissociation process. The different photodissociation mechanisms are analyzed and discussed in light of the results obtained.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...