Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 128(8): 083401, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35275683

RESUMEN

We propose and demonstrate the appearance of an effective attractive three-body interaction in coherently driven two-component Bose-Einstein condensates. It originates from the spinor degree of freedom that is affected by a two-body mean-field shift of the driven transition frequency. Importantly, its strength can be controlled with the Rabi-coupling strength and it does not come with additional losses. In the experiment, the three-body interactions are adjusted to play a predominant role in the equation of state of a cigar-shaped trapped condensate. This is confirmed through two striking observations: a downshift of the radial breathing mode frequency and the radial collapses for positive values of the dressed-state scattering length.

2.
Phys Rev Lett ; 127(20): 203402, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34860048

RESUMEN

We theoretically calculate and experimentally measure the beyond-mean-field (BMF) equation of state in a coherently coupled two-component Bose-Einstein condensate (BEC) in the regime where averaging of the interspecies and intraspecies coupling constants over the hyperfine composition of the single-particle dressed state predicts the exact cancellation of the two-body interaction. We show that with increasing the Rabi-coupling frequency Ω, the BMF energy density crosses over from the nonanalytic Lee-Huang-Yang scaling ∝n^{5/2} to an expansion in integer powers of density, where, in addition to a two-body BMF term ∝n^{2}sqrt[Ω], there emerges a repulsive three-body contribution ∝n^{3}/sqrt[Ω]. We experimentally evidence these two contributions, thanks to their different scaling with Ω, in the expansion of a Rabi-coupled two-component ^{39}K condensate in a waveguide. By studying the expansion with and without Rabi coupling, we reveal an important feature relevant for observing BMF effects and associated phenomena in mixtures with spin-asymmetric losses: Rabi coupling helps preserve the spin composition and thus prevents the system from drifting away from the point of the vanishing mean field.

3.
Phys Rev Lett ; 104(22): 220602, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20867158

RESUMEN

We study the horizontal expansion of vertically confined ultracold atoms in the presence of disorder. Vertical confinement allows us to realize a situation with a few coupled harmonic oscillator quantum states. The disordered potential is created by an optical speckle at an angle of 30° with respect to the horizontal plane, resulting in an effective anisotropy of the correlation lengths of a factor of 2 in that plane. We observe diffusion leading to non-gaussian density profiles. Diffusion coefficients, extracted from the experimental results, show anisotropy and strong energy dependence, in agreement with numerical calculations.

4.
Science ; 315(5818): 1556-8, 2007 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-17363669

RESUMEN

The phase transition of Bose-Einstein condensation was studied in the critical regime, where fluctuations extend far beyond the length scale of thermal de Broglie waves. We used matter-wave interference to measure the correlation length of these critical fluctuations as a function of temperature. Observations of the diverging behavior of the correlation length above the critical temperature enabled us to determine the critical exponent of the correlation length for a trapped, weakly interacting Bose gas to be nu = 0.67 +/- 0.13. This measurement has direct implications for the understanding of second-order phase transitions.

5.
Phys Rev Lett ; 93(5): 050401, 2004 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-15323676

RESUMEN

We report Bose-Einstein condensation of weakly bound 6Li2 molecules in a crossed optical trap near a Feshbach resonance. We measure a molecule-molecule scattering length of 170(+100)(-60) nm at 770 G, in good agreement with theory. We study the 2D expansion of the cloud and show deviation from hydrodynamic behavior in the BEC-BCS crossover region.

6.
Phys Rev Lett ; 91(24): 240401, 2003 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-14683093

RESUMEN

We create weakly bound Li2 molecules from a degenerate two component Fermi gas by sweeping a magnetic field across a Feshbach resonance. The atom-molecule transfer efficiency can reach 85% and is studied as a function of magnetic field and initial temperature. The bosonic molecules remain trapped for 0.5 s and their temperature is within a factor of 2 from the Bose-Einstein condensation temperature. A thermodynamical model reproduces qualitatively the experimental findings.

7.
Phys Rev Lett ; 91(2): 020402, 2003 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-12906466

RESUMEN

We investigate the strongly interacting regime in an optically trapped 6Li Fermi mixture near a Feshbach resonance. The resonance is found at 800(40) G in good agreement with theory. Anisotropic expansion of the gas is interpreted by collisional hydrodynamics. We observe an unexpected and large shift (80 G) between the resonance peak and both the maximum of atom loss and the change of sign of the interaction energy.

8.
Science ; 296(5571): 1290-3, 2002 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-12016308

RESUMEN

We report the production of matter-wave solitons in an ultracold lithium-7 gas. The effective interaction between atoms in a Bose-Einstein condensate is tuned with a Feshbach resonance from repulsive to attractive before release in a one-dimensional optical waveguide. Propagation of the soliton without dispersion over a macroscopic distance of 1.1 millimeter is observed. A simple theoretical model explains the stability region of the soliton. These matter-wave solitons open possibilities for future applications in coherent atom optics, atom interferometry, and atom transport.

9.
Phys Rev Lett ; 87(8): 080403, 2001 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-11497930

RESUMEN

We report the observation of coexisting Bose-Einstein condensate (BEC) and Fermi gas in a magnetic trap. With a very small fraction of thermal atoms, the 7Li condensate is quasipure and in thermal contact with a 6Li Fermi gas. The lowest common temperature is 0.28 microK approximately 0.2(1)T(C) = 0.2(1)T(F) where T(C) is the BEC critical temperature and T(F) the Fermi temperature. The 7Li condensate has a one-dimensional character.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...