Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Materials (Basel) ; 16(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36614799

RESUMEN

Vanadium dioxide (VO2) with an insulator-to-metal (IMT) transition (∼68 °C) is considered a very attractive thermochromic material for smart window applications. Indeed, tailoring and understanding the thermochromic and surface properties at lower temperatures can enable room-temperature applications. The effect of W doping on the thermochromic, surface, and nanostructure properties of VO2 thin film was investigated in the present proof. W-doped VO2 thin films with different W contents were deposited by pulsed laser deposition (PLD) using V/W (+O2) and V2O5/W multilayers. Rapid thermal annealing at 400-450 °C under oxygen flow was performed to crystallize the as-deposited films. The thermochromic, surface chemistry, structural, and morphological properties of the thin films obtained were investigated. The results showed that the V5+ was more surface sensitive and W distribution was homogeneous in all samples. Moreover, the V2O5 acted as a W diffusion barrier during the annealing stage, whereas the V+O2 environment favored W surface diffusion. The phase transition temperature gradually decreased with increasing W content with a high efficiency of -26 °C per at. % W. For the highest doping concentration of 1.7 at. %, VO2 showed room-temperature transition (26 °C) with high luminous transmittance (62%), indicating great potential for optical applications.

2.
Nanomicro Lett ; 14(1): 103, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35416497

RESUMEN

We present an effective approach for fabricating nanowell arrays in a one-step laser process with promising applications for the storage and detection of chemical or biological elements. Biocompatible thin films of metallic glasses are manufactured with a selected composition of Zr65Cu35, known to exhibit remarkable mechanical properties and glass forming ability. Dense nanowell arrays spontaneously form in the ultrafast laser irradiation spot with dimensions down to 20 nm. The flared shape observed by transmission electron microscopy is ideal to ensure chemical or biological material immobilization into the nanowells. This also indicates that the localization of the cavitation-induced nanopores can be tuned by the density and size of the initial nanometric interstice from the columnar structure of films deposited by magnetron sputtering. In addition to the topographic functionalization, the laser-irradiated amorphous material exhibits structural changes analyzed by spectroscopic techniques at the nanoscale such as energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy. Results reveal structural changes consisting of nanocrystals of monoclinic zirconia that grow within the amorphous matrix. The mechanism is driven by local oxidation process catalyzed by extreme temperature and pressure conditions estimated by an atomistic simulation of the laser-induced nanowell formation.

3.
Nanomaterials (Basel) ; 11(5)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33921944

RESUMEN

The presence of surface oxides on the formation of laser-induced periodic surface structures (LIPSS) is regularly advocated to favor or even trigger the formation of high-spatial-frequency LIPSS (HSFL) during ultrafast laser-induced nano-structuring. This paper reports the effect of the laser texturing environment on the resulting surface oxides and its consequence for HSFLs formation. Nanoripples are produced on tungsten samples using a Ti:sapphire femtosecond laser under atmospheres with varying oxygen contents. Specifically, ambient, 10 mbar pressure of air, nitrogen and argon, and 10-7 mbar vacuum pressure are used. In addition, removal of any native oxide layer is achieved using plasma sputtering prior to laser irradiation. The resulting HSFLs have a sub-100 nm periodicity and sub 20 nm amplitude. The experiments reveal the negligible role of oxygen during the HSFL formation and clarifies the significant role of ambient pressure in the resulting HSFLs period.

4.
Nanomaterials (Basel) ; 11(5)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922059

RESUMEN

Surface nanostructuring by femtosecond laser is an efficient way to manipulate surface topography, creating advanced functionalities of irradiated materials. Thin-film metallic glasses obtained by physical vapor deposition exhibit microstructures free from grain boundaries, crystallites and dislocations but also characterized by a nanometric surface roughness. These singular properties make them more resilient to other metals to form laser-induced nanopatterns. Here we investigate the morphological response of Zr65Cu35 alloys under ultrafast irradiation with multipulse feedback. We experimentally demonstrate that the initial columnar microstructure affects the surface topography evolution and conditions the required energy dose to reach desired structures in the nanoscale domain. Double pulses femtosecond laser irradiation is also shown to be an efficient strategy to force materials to form uniform nanostructures even when their thermomechanical properties have a poor predisposition to generate them.

5.
Sci Rep ; 10(1): 15152, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32938949

RESUMEN

We describe the evolution of ultrafast-laser-excited bulk fused silica over the entire relaxation range in one-dimensional geometries fixed by non-diffractive beams. Irradiation drives local embedded modifications of the refractive index in the form of index increase in densified glass or in the form of nanoscale voids. A dual spectroscopic and imaging investigation procedure is proposed, coupling electronic excitation and thermodynamic relaxation. Specific sub-ps and ns plasma decay times are respectively correlated to these index-related electronic and thermomechanical transformations. For the void formation stages, based on time-resolved spectral imaging, we first observe a dense transient plasma phase that departs from the case of a rarefied gas, and we indicate achievable temperatures in the excited matter in the 4,000-5,500 K range, extending for tens of ns. High-resolution speckle-free microscopy is then used to image optical signatures associated to structural transformations until the evolution stops. Multiscale imaging indicates characteristic timescales for plasma decay, heat diffusion, and void cavitation, pointing out key mechanisms of material transformation on the nanoscale in a range of processing conditions. If glass densification is driven by sub-ps electronic decay, for nanoscale structuring we advocate the passage through a long-living dense ionized phase that decomposes on tens of ns, triggering cavitation.

6.
Materials (Basel) ; 12(4)2019 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-30813395

RESUMEN

Graphene-based materials are widely studied to enable significant improvements in electroanalytical devices requiring new generations of robust, sensitive and low-cost electrodes. In this paper, we present a direct one-step route to synthetize a functional nitrogen-doped graphene film onto a Ni-covered silicon electrode substrate heated at high temperature, by pulsed laser deposition of carbon in the presence of a surrounding nitrogen atmosphere, with no post-deposition transfer of the film. With the ferrocene methanol system, the functionalized electrode exhibits excellent reversibility, close to the theoretical value of 59 mV, and very high sensitivity to hydrogen peroxide oxidation. Our electroanalytical results were correlated with the composition and nanoarchitecture of the N-doped graphene film containing 1.75 at % of nitrogen and identified as a few-layer defected and textured graphene film containing a balanced mixture of graphitic-N and pyrrolic-N chemical functions. The absence of nitrogen dopant in the graphene film considerably degraded some electroanalytical performances. Heat treatment extended beyond the high temperature graphene synthesis did not significantly improve any of the performances. This work contributes to a better understanding of the electrochemical mechanisms of doped graphene-based electrodes obtained by a direct and controlled synthesis process.

7.
Front Chem ; 6: 572, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30560117

RESUMEN

Graphene is a remarkable two-dimensional (2D) material that is of great interest to both academia and industry. It has outstanding electrical and thermal conductivity and good mechanical behavior with promising applications in electronic devices, supercapacitors, batteries, composite materials, flexible transparent displays, solar cells, and sensors. Several methods have been used to produce either pristine graphene or doped graphene. These include chemical vapor deposition (CVD), mechanical exfoliation, decomposition of SiC, liquid-phase exfoliation, pulsed laser deposition (PLD). Among these methods, PLD, which is routinely used for growing complex oxide thin films has proved to be an alternative to the more widely reported CVD method for producing graphene thin films, because of its advantages. Here we review the synthesis of graphene using PLD. We describe recent progress in preparing pristine graphene and doped graphene by PLD, including deposition processes and characterization. The goal of this complete survey is to describe the advantages of using the technique for graphene growth. The review will also help researchers to better understand graphene synthesis using the PLD technique.

8.
Sci Rep ; 8(1): 3247, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29459683

RESUMEN

New synthesis routes to tailor graphene properties by controlling the concentration and chemical configuration of dopants show great promise. Herein we report the direct reproducible synthesis of 2-3% nitrogen-doped 'few-layer' graphene from a solid state nitrogen carbide a-C:N source synthesized by femtosecond pulsed laser ablation. Analytical investigations, including synchrotron facilities, made it possible to identify the configuration and chemistry of the nitrogen-doped graphene films. Auger mapping successfully quantified the 2D distribution of the number of graphene layers over the surface, and hence offers a new original way to probe the architecture of graphene sheets. The films mainly consist in a Bernal ABA stacking three-layer architecture, with a layer number distribution ranging from 2 to 6. Nitrogen doping affects the charge carrier distribution but has no significant effects on the number of lattice defects or disorders, compared to undoped graphene synthetized in similar conditions. Pyridinic, quaternary and pyrrolic nitrogen are the dominant chemical configurations, pyridinic N being preponderant at the scale of the film architecture. This work opens highly promising perspectives for the development of self-organized nitrogen-doped graphene materials, as synthetized from solid carbon nitride, with various functionalities, and for the characterization of 2D materials using a significant new methodology.

9.
Chemphyschem ; 16(3): 682-90, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25504985

RESUMEN

A library of π-expanded α,ß-unsaturated ketones was designed and synthesized. They were prepared by a combination of Wittig reaction, Sonogashira reaction, and aldol condensation. It was further demonstrated that the double aldol condensation can be performed effectively for highly polarized styrene- and diphenylacetylene-derived aldehydes. The strategic placement of two dialkylamino groups at the periphery of D-π-A-π-D molecules resulted in dyes with excellent solubility. These ketones absorb light in the region 400-550 nm. Many of them display strong solvatochromism so that the emission ranges from 530-580 nm in toluene to the near-IR region in benzonitrile. Ketones based on cyclobutanone as central moieties display very high fluorescence quantum yields in nonpolar solvents, which decrease drastically in polar media. Photophysical studies of these new functional dyes revealed that they possess an enhanced two-photon absorption cross section when compared with simpler ketone derivatives. Due to strong polarization of the resulting dyes, values of two-photon absorption cross sections on the level of 200-300 GM at 800 nm were achieved, and thanks to that as well as the presence of the keto group, these new two-photon initiators display excellent performance so that the operating region is 5-75 mW in some cases.


Asunto(s)
Cetonas/química , Aldehídos/química , Cetonas/síntesis química , Fotones , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Polimerizacion , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...