Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Radiat Plasma Med Sci ; 6(4): 393-403, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35372739

RESUMEN

The best crystal identification (CI) algorithms proposed so far for phoswich detectors are based on adaptive filtering and pulse shape discrimination (PSD). However, these techniques require free running analog to digital converters, which is no longer possible with the ever increasing pixelization of new detectors. We propose to explore the dual-threshold time-over-threshold (ToT) technique, used to measure events energy and time of occurence, as a more robust solution for crystal identification with broad energy windows in phoswich detectors. In this study, phoswich assemblies made of various combinations of LGSO and LYSO scintillators with decay times in the range 30 to 65 ns were investigated for the LabPET II detection front-end. The electronic readout is based on a 4 × 8 APD array where pixels are individually coupled to charge sensitive preamplifiers followed by first order CR-RC shapers with 75 ns peaking time. Crystal identification data were sorted out based on the measurements of likeliness between acquired signals and a time domain model of the analog front-end. Results demonstrate that crystal identification can be successfully performed using a dual-threshold ToT scheme with a discrimination accuracy of 99.1% for LGSO (30 ns)/LGSO (45 ns), 98.1% for LGSO (65 ns)/LYSO (40 ns) and 92.1% for LYSO (32 ns)/LYSO (47 ns), for an energy window of [350-650] keV. Moreover, the method shows a discrimination accuracy >97% for the two first pairs and ~90% for the last one when using a wide energy window of [250-650] keV.

2.
Artículo en Inglés | MEDLINE | ID: mdl-32624634

RESUMEN

The Time-over-Threshold (ToT) analog-to-digital signal processing approach provides a power-efficient and cost-effective technique to extract all relevant information from detectors in high-energy physics and Positron Emission Tomography (PET) imaging. In this work, three calibration methods were investigated to correct the inherent nonlinear response of the ToT data using 1) γ-ray sources of various energies, 2) internal electronic gain variation in the LabPET II ASIC in combination with a single energy γ-ray source, and 3) internal gain variation along with an embedded pulse charge generator in replacement of a γ-ray source. The electronic gain calibration technique was shown to achieve equivalent correction accuracy as the γ-ray sources calibration. Furthermore, this method has the advantage of allowing a faster calibration requiring only one single γ-ray source (e.g., 511 keV) and a quick automated routine to sweep the internal gain. The last technique would be the most convenient method, provided that the signal pulse shape would be similar to the detector signal responding to a typical γ-ray event. Whereas the concept was demonstrated with a step pulse, extensive processing would be required to recover the nonlinearity correction factors for the detector pulse shape. After calibration, the 511-keV energy resolution of typical LabPET II detectors was only slightly degraded, by less than 12% and 8% for methods 1) and 2), respectively, relative to a conventional ADC-based data acquisition system. The feasibility of fast and accurate calibration for the nonlinearity correction of ToT data in PET imaging was demonstrated, making a daily quality control within reach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...