Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Gynecol Oncol ; 190: 209-214, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39232408

RESUMEN

BACKGROUND: We evaluated the feasibility of completing 6 cycles of nab-paclitaxel (nab-P) and carboplatin (C) in a single arm prospective clinical trial for advanced/recurrent EC and safety and efficacy of day (D) 1, 8 nab-P in combination with D1 C q3weeks. METHODS: Patients with early-stage, high-risk, advanced primary/recurrent EC without prior platinum/taxane exposure were enrolled in an open-label, single-institution trial (NCT02744898). Patients received 6 cycles of D1 nab-P 100 mg/m2 IV with C AUC 6 IV and D8 nab-P 100 mg/m2 IV q21D. The trial tested the null hypothesis that subjects completing 6 cycles was ≤0.50 versus the alternative that the proportion is ≥0.75 in a single stage design with alpha = 0.05 and power = 80% with 23 subjects. Patients who completed 6 cycles (primary outcome), objective response rate (ORR) and clinical benefit rate (CBR) were estimated with exact 95% Clopper-Pearson confidence intervals. Progression free survival (PFS) and overall survival (OS) were estimated using Kaplan-Meier methods. RESULTS: From 08/2016-03/2018, 23 patients were enrolled. Nineteen patients (82.6%, 95% CI: 61.2%, 95.0%) completed 6 cycles, thus we could reject our null. Twelve patients (52.2%) experienced ≥1 grade 3/4 treatment-related adverse events including: anemia, 6 (26.1%); neutropenia, 5 (21.7%); diarrhea, 3 (13.0%). Fourteen patients (60.1%) reported grade 1 neuropathy. Of 9 patients with measurable target lesions, the ORR was 33.3% (95% CI: 7.5%, 70.1%) and CBR was 55.6% (95% CI: 21.2%, 86.3%). Median PFS in the advanced/recurrent patients was 23.2 (95% CI: 12.1, NR) months. CONCLUSIONS: The nab-P/C D1, 8 regimen met pre-specified feasibility criteria with acceptable toxicity and efficacy. Use of nab-P decreases need for steroid pre-medications, and this carboplatin doublet may prove advantageous for trials assessing combinations with immune checkpoint inhibitors in advanced EC.

2.
J Infect Dis ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042731

RESUMEN

BACKGROUND: Sapovirus is an important cause of acute gastroenteritis in childhood. While vaccines against sapovirus may reduce gastroenteritis burden, a major challenge to their development is a lack of information about natural immunity. METHODS: We measured sapovirus-specific IgG in serum collected, between 2017 and 2020, of mothers soon after delivery and at 6 time points in Nicaraguan children until 3 years of age (n=112 dyads) using virus-like particles representing three sapovirus genotypes (GI.1, GI.2, GV.1). RESULTS: Sixteen (14.3%) of the 112 children experienced at least one sapovirus gastroenteritis episode, of which GI.1 was the most common genotype. Seroconversion to GI.1 and GI.2 was most common between 5 and 12 months of age, while seroconversion to GV.1 peaked at 18 to 24 months of age. All children who experienced sapovirus GI.1 gastroenteritis seroconverted and developed genotype-specific IgG. The impact of sapovirus exposure on population immunity was determined using antigenic cartography: newborns share their mothers' broadly binding IgG responses, which declined at 5 months of age and then increased as infants experienced natural sapovirus infections. CONCLUSION: By tracking humoral immunity to sapovirus over the first 3 years of life, this study provides important insights for the design and timing of future pediatric sapovirus vaccines.

3.
Nat Commun ; 15(1): 3738, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702297

RESUMEN

Whole virus-based inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide have been critical to the COVID-19 pandemic response. Although these vaccines are protective against homologous coronavirus infection, the emergence of novel variants and the presence of large zoonotic reservoirs harboring novel heterologous coronaviruses provide significant opportunities for vaccine breakthrough, which raises the risk of adverse outcomes like vaccine-associated enhanced respiratory disease. Here, we use a female mouse model of coronavirus disease to evaluate inactivated vaccine performance against either homologous challenge with SARS-CoV-2 or heterologous challenge with a bat-derived coronavirus that represents a potential emerging disease threat. We show that inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide can cause enhanced respiratory disease during heterologous infection, while use of an alternative adjuvant does not drive disease and promotes heterologous viral clearance. In this work, we highlight the impact of adjuvant selection on inactivated vaccine safety and efficacy against heterologous coronavirus infection.


Asunto(s)
Hidróxido de Aluminio , Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Vacunas de Productos Inactivados , Animales , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Femenino , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/virología , Ratones , Vacunas de Productos Inactivados/inmunología , SARS-CoV-2/inmunología , Hidróxido de Aluminio/administración & dosificación , Modelos Animales de Enfermedad , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes de Vacunas , Anticuerpos Antivirales/inmunología , Ratones Endogámicos BALB C , Humanos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología
4.
Cell Rep ; 43(4): 114076, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607917

RESUMEN

The severe acute respiratory syndrome coronavirus 2 pandemic is characterized by the emergence of novel variants of concern (VOCs) that replace ancestral strains. Here, we dissect the complex selective pressures by evaluating variant fitness and adaptation in human respiratory tissues. We evaluate viral properties and host responses to reconstruct forces behind D614G through Omicron (BA.1) emergence. We observe differential replication in airway epithelia, differences in cellular tropism, and virus-induced cytotoxicity. D614G accumulates the most mutations after infection, supporting zoonosis and adaptation to the human airway. We perform head-to-head competitions and observe the highest fitness for Gamma and Delta. Under these conditions, RNA recombination favors variants encoding the B.1.617.1 lineage 3' end. Based on viral growth kinetics, Alpha, Gamma, and Delta exhibit increased fitness compared to D614G. In contrast, the global success of Omicron likely derives from increased transmission and antigenic variation. Our data provide molecular evidence to support epidemiological observations of VOC emergence.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/fisiología , SARS-CoV-2/genética , COVID-19/virología , COVID-19/transmisión , Replicación Viral , Mutación/genética , Mucosa Respiratoria/virología , Aptitud Genética , Animales , Células Epiteliales/virología , Chlorocebus aethiops , Adaptación Fisiológica/genética , Células Vero
5.
bioRxiv ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38559009

RESUMEN

The merbecovirus subgenus of coronaviruses includes Middle East Respiratory Syndrome Coronavirus (MERS-CoV), a zoonotic pathogen transmitted from dromedary camels to humans that causes severe respiratory disease. Viral discovery efforts have uncovered hundreds of merbecoviruses in different species across multiple continents, but few have been studied under laboratory conditions, leaving basic questions regarding their human threat potential unresolved. Viral entry into host cells is a critical step for transmission between hosts. Here, a scalable approach that assesses novel merbecovirus cell entry was developed and used to evaluate receptor use across the entire merbecovirus subgenus. Merbecoviruses are sorted into clades based on the receptor-binding domain of the spike glycoprotein. Receptor tropism is clade-specific, with the clade including MERS-CoV using DPP4 and multiple clades using ACE2, including HKU5 bat coronaviruses. Mutational analysis identified possible structural limitations to HKU5 adaptability and a cryo-EM structure of the HKU5-20s spike trimer revealed only 'down' RBDs.

6.
Virus Res ; 341: 199319, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38224840

RESUMEN

Following the emergence of B.1.1.529 Omicron, the SARS-CoV-2 virus evolved into a significant number of sublineage variants that possessed numerous mutations throughout the genome, but particularly within the spike glycoprotein (S) gene. For example, the BQ.1.1 and the XBB.1 and XBB.1.5 subvariants contained 34 and 41 mutations in S, respectively. However, these variants elicited largely replication only or mild disease phenotypes in mice. To better model pathogenic outcomes and measure countermeasure performance, we developed mouse adapted versions (BQ.1.1 MA; XBB.1 MA; XBB.1.5 MA) that reflect more pathogenic acute phase pulmonary disease symptoms of SARS-CoV-2, as well as derivative strains expressing nano-luciferase (nLuc) in place of ORF7 (BQ.1.1 nLuc; XBB.1 nLuc; XBB.1.5 nLuc). Amongst the mouse adapted (MA) viruses, a wide range of disease outcomes were observed including mortality, weight loss, lung dysfunction, and tissue viral loads in the lung and nasal turbinates. Intriguingly, XBB.1 MA and XBB.1.5 MA strains, which contained identical mutations throughout except at position F486S/P in S, exhibited divergent disease outcomes in mice (Ao et al., 2023). XBB.1.5 MA infection was associated with significant weight loss and ∼45 % mortality across two independent studies, while XBB.1 MA infected animals suffered from mild weight loss and only 10 % mortality across the same two independent studies. Additionally, the development and use of nanoluciferase expressing strains provided moderate throughput for live virus neutralization assays. The availability of small animal models for the assessment of Omicron VOC disease potential will enable refined capacity to evaluate the efficacy of on market and pre-clinical therapeutics and interventions.


Asunto(s)
SARS-CoV-2 , Pérdida de Peso , Animales , Ratones , Ratones Endogámicos BALB C , Mutación , Fenotipo
7.
Explor Res Clin Soc Pharm ; 12: 100371, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38058361

RESUMEN

Background: Diabetes is the fifth leading cause of death in the United States (US), affecting approximately 27%, or 15.9 million adults 65 years of age and older. Diabetes is the most expensive chronic condition in the US and accounts for the second largest avoidable healthcare cost. Adherence to long-term medication treatment plans is crucial among patients with diabetes because it decreases risk of developing comorbid conditions and improves quality of life. Greater exposure to adverse social determinants of health (SDOH) over an individual's lifespan can result in worse health outcomes. Hence, it is important to obtain a better understanding of how social determinants of health (SDOH) influence patients' behaviors and affect medication adherence among older adults with diabetes. Objectives: Identify and prioritize SDOH associated with medication adherence among a nationally representative sample of older adults with diabetes. Secondary objectives were to characterize SDOH, estimate medication adherence, and explain implications for health disparity populations among older adults in the US who have been diagnosed with diabetes. Methods: This study used a cross-sectional secondary data analysis to examine the National Health and Nutrition Examination Survey database, identifying associations between SDOH and medication adherence among older adults with diabetes in the US. Results: A total of 1807 respondents' data were included in the analyses. Nearly three-quarters (73.9%) of patients were considered adherent to their oral diabetes medications. Multivariable analysis revealed significant differences in medication adherence based on disability status (p = 0.016), household balanced meals (p = 0.033), and interview language (p = 0.008). Conclusions: Results revealed those with a disability, those who could not afford a balanced meal, and/or those who spoke English were associated with a higher likelihood of being nonadherent to their diabetes medications in comparison to individuals not in these groups. These findings can assist in developing SDOH-centered medication adherence strategies for pharmacists to implement with older patients with diabetes.

8.
JCI Insight ; 8(22)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37796612

RESUMEN

Although SARS-CoV-2 evolution seeds a continuous stream of antibody-evasive viral variants, COVID-19 mRNA vaccines provide robust protection against severe disease and hospitalization. Here, we asked whether mRNA vaccine-induced memory T cells limit lung SARS-CoV-2 replication and severe disease. We show that mice and humans receiving booster BioNTech mRNA vaccine developed potent CD8 T cell responses and showed similar kinetics of expansion and contraction of granzyme B/perforin-expressing effector CD8 T cells. Both monovalent and bivalent mRNA vaccines elicited strong expansion of a heterogeneous pool of terminal effectors and memory precursor effector CD8 T cells in spleen, inguinal and mediastinal lymph nodes, pulmonary vasculature, and most surprisingly in the airways, suggestive of systemic and regional surveillance. Furthermore, we document that: (a) CD8 T cell memory persists in multiple tissues for > 200 days; (b) following challenge with pathogenic SARS-CoV-2, circulating memory CD8 T cells rapidly extravasate to the lungs and promote expeditious viral clearance, by mechanisms that require CD4 T cell help; and (c) adoptively transferred splenic memory CD8 T cells traffic to the airways and promote lung SARS-CoV-2 clearance. These findings provide insights into the critical role of memory T cells in preventing severe lung disease following breakthrough infections with antibody-evasive SARS-CoV-2 variants.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Animales , Ratones , Células T de Memoria , COVID-19/prevención & control , SARS-CoV-2 , Pulmón
9.
Sci Transl Med ; 15(715): eadg5567, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37756379

RESUMEN

The repeated emergence of zoonotic human betacoronaviruses (ß-CoVs) dictates the need for broad therapeutics and conserved epitope targets for countermeasure design. Middle East respiratory syndrome (MERS)-related coronaviruses (CoVs) remain a pressing concern for global health preparedness. Using metagenomic sequence data and CoV reverse genetics, we recovered a full-length wild-type MERS-like BtCoV/li/GD/2014-422 (BtCoV-422) recombinant virus, as well as two reporter viruses, and evaluated their human emergence potential and susceptibility to currently available countermeasures. Similar to MERS-CoV, BtCoV-422 efficiently used human and other mammalian dipeptidyl peptidase protein 4 (DPP4) proteins as entry receptors and an alternative DPP4-independent infection route in the presence of exogenous proteases. BtCoV-422 also replicated efficiently in primary human airway, lung endothelial, and fibroblast cells, although less efficiently than MERS-CoV. However, BtCoV-422 shows minor signs of infection in 288/330 human DPP4 transgenic mice. Several broad CoV antivirals, including nucleoside analogs and 3C-like/Mpro protease inhibitors, demonstrated potent inhibition against BtCoV-422 in vitro. Serum from mice that received a MERS-CoV mRNA vaccine showed reduced neutralizing activity against BtCoV-422. Although most MERS-CoV-neutralizing monoclonal antibodies (mAbs) had limited activity, one anti-MERS receptor binding domain mAb, JC57-11, neutralized BtCoV-422 potently. A cryo-electron microscopy structure of JC57-11 in complex with BtCoV-422 spike protein revealed the mechanism of cross-neutralization involving occlusion of the DPP4 binding site, highlighting its potential as a broadly neutralizing mAb for group 2c CoVs that use DPP4 as a receptor. These studies provide critical insights into MERS-like CoVs and provide candidates for countermeasure development.


Asunto(s)
Quirópteros , Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , Animales , Ratones , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Microscopía por Crioelectrón , Anticuerpos Monoclonales/metabolismo
10.
ACS Omega ; 7(36): 31935-31944, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36097511

RESUMEN

The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib, paxlovid, and molnupiravir), or in advanced clinical trials. Vandetanib is a kinase inhibitor which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), as well as the RET-tyrosine kinase. In the current study, it was tested in different cell lines and showed promising results on inhibition versus the toxic effect on A549-hACE2 cells (IC50 0.79 µM) while also showing a reduction of >3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, and TNF-α and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib also decreased CCL2, CCL3, and CCL4 compared to the infected animals. Vandetanib additionally rescued the decreased IFN-1ß caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved anticancer drug vandetanib is worthy of further assessment as a potential therapeutic candidate to block the COVID-19 cytokine storm.

11.
J Med Chem ; 65(13): 9063-9075, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35785990

RESUMEN

N-Methyl-d-aspartate receptor (NMDAR) positive allosteric modulators (PAMs) have received increased interest as a powerful mechanism of action to provide relief as therapies for CNS disorders. Sage Therapeutics has previously published the discovery of endogenous neuroactive steroid 24(S)-hydroxycholesterol as an NMDAR PAM. In this article, we detail the discovery of development candidate SAGE-718 (5), a potent and high intrinsic activity NMDAR PAM with an optimized pharmacokinetic profile for oral dosing. Compound 5 has completed phase 1 single ascending dose and multiple ascending dose clinical trials and is currently undergoing phase 2 clinical trials for treatment of cognitive impairment in Huntington's disease.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Disfunción Cognitiva , Neuroesteroides , Regulación Alostérica , Disfunción Cognitiva/tratamiento farmacológico , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo
12.
ACS Chem Biol ; 17(7): 1937-1950, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35723434

RESUMEN

Inhibition of the protein kinase CSNK2 with any of 30 specific and selective inhibitors representing different chemotypes, blocked replication of pathogenic human, bat, and murine ß-coronaviruses. The potency of in-cell CSNK2A target engagement across the set of inhibitors correlated with antiviral activity and genetic knockdown confirmed the essential role of the CSNK2 holoenzyme in ß-coronavirus replication. Spike protein endocytosis was blocked by CSNK2A inhibition, indicating that antiviral activity was due in part to a suppression of viral entry. CSNK2A inhibition may be a viable target for the development of anti-SARS-like ß-coronavirus drugs.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Animales , Antivirales/farmacología , Coronavirus/genética , Humanos , Ratones , Internalización del Virus
13.
Proc Natl Acad Sci U S A ; 119(18): e2118126119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35476513

RESUMEN

Zoonotic transmission of coronaviruses poses an ongoing threat to human populations. Endemic outbreaks of swine acute diarrhea syndrome coronavirus (SADS-CoV) have caused severe economic losses in the pig industry and have the potential to cause human outbreaks. Currently, there are no vaccines or specific antivirals against SADS-CoV, and our limited understanding of SADS-CoV host entry factors could hinder prompt responses to a potential human outbreak. Using a genomewide CRISPR knockout screen, we identified placenta-associated 8 protein (PLAC8) as an essential host factor for SADS-CoV infection. Knockout of PLAC8 abolished SADS-CoV infection, which was restored by complementing PLAC8 from multiple species, including human, rhesus macaques, mouse, pig, pangolin, and bat, suggesting a conserved infection pathway and susceptibility of SADS-CoV among mammals. Mechanistically, PLAC8 knockout does not affect viral entry; rather, knockout cells displayed a delay and reduction in viral subgenomic RNA expression. In a swine primary intestinal epithelial culture (IEC) infection model, differentiated cultures have high levels of PLAC8 expression and support SADS-CoV replication. In contrast, expanding IECs have low levels of PLAC8 expression and are resistant to SADS-CoV infection. PLAC8 expression patterns translate in vivo; the immunohistochemistry of swine ileal tissue revealed high levels of PLAC8 protein in neonatal compared to adult tissue, mirroring the known SADS-CoV pathogenesis in neonatal piglets. Overall, PLAC8 is an essential factor for SADS-CoV infection and may serve as a promising target for antiviral development for potential pandemic SADS-CoV.


Asunto(s)
Alphacoronavirus , Infecciones por Coronavirus , Enfermedades de los Porcinos , Alphacoronavirus/genética , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Infecciones por Coronavirus/epidemiología , Porcinos
14.
bioRxiv ; 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35018375

RESUMEN

Inhibition of the protein kinase CSNK2 with any of 30 specific and selective inhibitors representing different chemotypes, blocked replication of pathogenic human and murine ß-coronaviruses. The potency of in-cell CSNK2A target engagement across the set of inhibitors correlated with antiviral activity and genetic knockdown confirmed the essential role of the CSNK2 holoenzyme in ß-coronavirus replication. Spike protein uptake was blocked by CSNK2A inhibition, indicating that antiviral activity was due in part to a suppression of viral entry. CSNK2A inhibition may be a viable target for development of new broad spectrum anti-ß-coronavirus drugs.

15.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-474779

RESUMEN

Inhibition of the protein kinase CSNK2 with any of 30 specific and selective inhibitors representing different chemotypes, blocked replication of pathogenic human and murine {beta}-coronaviruses. The potency of in-cell CSNK2A target engagement across the set of inhibitors correlated with antiviral activity and genetic knockdown confirmed the essential role of the CSNK2 holoenzyme in {beta}-coronavirus replication. Spike protein uptake was blocked by CSNK2A inhibition, indicating that antiviral activity was due in part to a suppression of viral entry. CSNK2A inhibition may be a viable target for development of new broad spectrum anti-{beta}-coronavirus drugs. GRAPHICAL ABSTRACT O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=72 SRC="FIGDIR/small/474779v3_ufig1.gif" ALT="Figure 1"> View larger version (19K): org.highwire.dtl.DTLVardef@5d2799org.highwire.dtl.DTLVardef@1d2de35org.highwire.dtl.DTLVardef@fa852eorg.highwire.dtl.DTLVardef@13da300_HPS_FORMAT_FIGEXP M_FIG C_FIG

16.
ACS Omega ; 6(11): 7454-7468, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33778258

RESUMEN

Severe acute respiratory coronavirus 2 (SARS-CoV-2) is a newly identified virus that has resulted in over 2.5 million deaths globally and over 116 million cases globally in March, 2021. Small-molecule inhibitors that reverse disease severity have proven difficult to discover. One of the key approaches that has been widely applied in an effort to speed up the translation of drugs is drug repurposing. A few drugs have shown in vitro activity against Ebola viruses and demonstrated activity against SARS-CoV-2 in vivo. Most notably, the RNA polymerase targeting remdesivir demonstrated activity in vitro and efficacy in the early stage of the disease in humans. Testing other small-molecule drugs that are active against Ebola viruses (EBOVs) would appear a reasonable strategy to evaluate their potential for SARS-CoV-2. We have previously repurposed pyronaridine, tilorone, and quinacrine (from malaria, influenza, and antiprotozoal uses, respectively) as inhibitors of Ebola and Marburg viruses in vitro in HeLa cells and mouse-adapted EBOV in mice in vivo. We have now tested these three drugs in various cell lines (VeroE6, Vero76, Caco-2, Calu-3, A549-ACE2, HUH-7, and monocytes) infected with SARS-CoV-2 as well as other viruses (including MHV and HCoV 229E). The compilation of these results indicated considerable variability in antiviral activity observed across cell lines. We found that tilorone and pyronaridine inhibited the virus replication in A549-ACE2 cells with IC50 values of 180 nM and IC50 198 nM, respectively. We used microscale thermophoresis to test the binding of these molecules to the spike protein, and tilorone and pyronaridine bind to the spike receptor binding domain protein with K d values of 339 and 647 nM, respectively. Human Cmax for pyronaridine and quinacrine is greater than the IC50 observed in A549-ACE2 cells. We also provide novel insights into the mechanism of these compounds which is likely lysosomotropic.

18.
bioRxiv ; 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34981062

RESUMEN

The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib) or in advanced clinical trials. We have tested 45 FDA-approved kinase inhibitors in vitro against murine hepatitis virus (MHV) as a model of SARS-CoV-2 replication and identified 12 showing inhibition in the delayed brain tumor (DBT) cell line. Vandetanib, which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), and the RET-tyrosine kinase showed the most promising results on inhibition versus toxic effect on SARS-CoV-2-infected Caco-2 and A549-hACE2 cells (IC50 0.79 µM) while also showing a reduction of > 3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, TNF-α, and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib rescued the decreased IFN-1ß caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved vandetanib is a potential therapeutic candidate for COVID-19 positioned for follow up in clinical trials either alone or in combination with other drugs to address the cytokine storm associated with this viral infection.

20.
bioRxiv ; 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33299990

RESUMEN

SARS-CoV-2 is a newly identified virus that has resulted in over 1.3 M deaths globally and over 59 M cases globally to date. Small molecule inhibitors that reverse disease severity have proven difficult to discover. One of the key approaches that has been widely applied in an effort to speed up the translation of drugs is drug repurposing. A few drugs have shown in vitro activity against Ebola virus and demonstrated activity against SARS-CoV-2 in vivo . Most notably the RNA polymerase targeting remdesivir demonstrated activity in vitro and efficacy in the early stage of the disease in humans. Testing other small molecule drugs that are active against Ebola virus would seem a reasonable strategy to evaluate their potential for SARS-CoV-2. We have previously repurposed pyronaridine, tilorone and quinacrine (from malaria, influenza, and antiprotozoal uses, respectively) as inhibitors of Ebola and Marburg virus in vitro in HeLa cells and of mouse adapted Ebola virus in mouse in vivo . We have now tested these three drugs in various cell lines (VeroE6, Vero76, Caco-2, Calu-3, A549-ACE2, HUH-7 and monocytes) infected with SARS-CoV-2 as well as other viruses (including MHV and HCoV 229E). The compilation of these results indicated considerable variability in antiviral activity observed across cell lines. We found that tilorone and pyronaridine inhibited the virus replication in A549-ACE2 cells with IC 50 values of 180 nM and IC 50 198 nM, respectively. We have also tested them in a pseudovirus assay and used microscale thermophoresis to test the binding of these molecules to the spike protein. They bind to spike RBD protein with K d values of 339 nM and 647 nM, respectively. Human C max for pyronaridine and quinacrine is greater than the IC 50 hence justifying in vivo evaluation. We also provide novel insights into their mechanism which is likely lysosomotropic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA