Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
CNS Neurosci Ther ; 30(3): e14448, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37718696

RESUMEN

BACKGROUND: miRNA-based strategies have recently emerged as a promising therapeutic approach in several neurodegenerative diseases. Unregulated cation influx is implicated in several cellular mechanisms underlying neural cell death during ischemia. The brain constitutively active isoform of transient receptor potential melastatin 7 (TRPM7) represents a glutamate excitotoxicity-independent pathway that significantly contributes to the pathological Ca2+ overload during ischemia. AIMS: In the light of these premises, inhibition of TRPM7 may be a reasonable strategy to reduce ischemic injury. Since TRPM7 is a putative target of miRNA135a, the aim of the present paper was to evaluate the role played by miRNA135a in cerebral ischemia. Therefore, the specific objectives of the present paper were: (1) to evaluate miR135a expression in temporoparietal cortex of ischemic rats; (2) to investigate the effect of the intracerebroventricular (icv) infusion of miR135a on ischemic damage and neurological functions; and (3) to verify whether miR135a effects may be mediated by an alteration of TRPM7 expression. METHODS: miR135a expression was evaluated by RT- PCR and FISH assay in temporoparietal cortex of ischemic rats. Ischemic volume and neurological functions were determined in rats subjected to transient middle cerebral artery occlusion (tMCAo) after miR135a intracerebroventricular perfusion. Target analysis was performed by Western blot. RESULTS: Our results demonstrated that, in brain cortex, 72 h after ischemia, miR135a expression increased, while TRPM7 expression was parallelly downregulated. Interestingly, miR135a icv perfusion strongly ameliorated the ischemic damage and improved neurological functions, and downregulated TRPM7 protein levels. CONCLUSIONS: The early prevention of TRPM7 activation is protective during brain ischemia.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Canales Catiónicos TRPM , Ratas , Animales , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Infarto de la Arteria Cerebral Media
2.
Cell Death Discov ; 8(1): 318, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831286

RESUMEN

To identify alternative interventions in neonatal hypoxic-ischemic encephalopathy, researchers' attention has been focused to the study of endogenous neuroprotective strategies. Based on the preconditioning concept that a subthreshold insult may protect from a subsequent harmful event, we aimed at identifying a new preconditioning protocol able to enhance Ca2+-dependent neurogenesis in a mouse model of neonatal hypoxia ischemia (HI). To this purpose, we also investigated the role of the preconditioning-linked protein controlling ionic homeostasis, Na+/Ca2+ exchanger (NCX). Hypoxic Preconditioning (HPC) was reproduced by exposing P7 mice to 20' hypoxia. HI was induced by isolating and cutting the right common carotid artery. A significant reduction in ischemic damage was observed in mice subjected to 20' hypoxia followed,3 days later, by 60' HI, thus suggesting that 20' hypoxia functions as preconditioning stimulus. HPC promoted neuroblasts proliferation in the dentate gyrus mirrored by an increase of NCX1 and NCX3-positive cells and an improvement of behavioral motor performances in HI mice. An attenuation of HPC neuroprotection as well as a reduction in the expression of neurogenesis markers, including p57 and NeuroD1, was observed in preconditioned mice lacking NCX1 or NCX3. In summary, PC in neonatal mice triggers a neurogenic process linked to ionic homeostasis maintenance, regulated by NCX1 and NCX3.

3.
Cell Calcium ; 87: 102183, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32120196

RESUMEN

The ischemic tolerance (IT) paradigm represents a fundamental cell response to certain types or injury able to render an organ more "tolerant" to a subsequent, stronger, insult. During the 16th century, the toxicologist Paracelsus described for the first time the possibility that a noxious event might determine a state of tolerance. This finding was summarized in one of his most important mentions: "The dose makes the poison". In more recent years, ischemic tolerance in the brain was first described in 1991, when it was demonstrated by Kirino and collaborators that two minutes of subthreshold brain ischemia in gerbils produced tolerance against global brain ischemia. Based on the time in which the conditioning stimulus is applied, it is possible to define preconditioning, perconditioning and postconditioning, when the subthreshold insult is applied before, during or after the ischemic event, respectively. Furthermore, depending on the temporal delay from the ischemic event, two different modalities are distinguished: rapid or delayed preconditioning and postconditioning. Finally, the circumstance in which the conditioning stimulus is applied on an organ distant from the brain is referred as remote conditioning. Over the years the "conditioning" paradigm has been applied to several brain disorders and a number of molecular mechanisms taking part to these protective processes have been described. The mechanisms are usually classified in three distinct categories identified as triggers, mediators and effectors. As concerns the putative effectors, it has been hypothesized that brain cells appear to have the ability to adapt to hypoxia by reducing their energy demand through modulation of ion channels and transporters, which delays anoxic depolarization. The purpose of the present review is to summarize the role played by plasmamembrane proteins able to control ionic homeostasis in mediating protection elicited by brain conditioning, particular attention will be deserved to the role played by Na+/Ca2+ exchanger.


Asunto(s)
Isquemia Encefálica/metabolismo , Neuroprotección , Intercambiador de Sodio-Calcio/metabolismo , Animales , Homeostasis , Humanos , Modelos Biológicos
4.
Cell Death Dis ; 6: e2004, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26633710

RESUMEN

Homeodomain-interacting protein kinase 2 (HIPK2) is a multitalented coregulator of an increasing number of transcription factors and cofactors involved in cell death and proliferation in several organs and systems. As Hipk2(-/-) mice show behavioral abnormalities consistent with cerebellar dysfunction, we investigated whether Hipk2 is involved in these neurological symptoms. To this aim, we characterized the postnatal developmental expression profile of Hipk2 in the brain cortex, hippocampus, striatum, and cerebellum of mice by real-time PCR, western blot analysis, and immunohistochemistry. Notably, we found that whereas in the brain cortex, hippocampus, and striatum, HIPK2 expression progressively decreased with age, that is, from postnatal day 1 to adulthood, it increased in the cerebellum. Interestingly, mice lacking Hipk2 displayed atrophic lobules and a visibly smaller cerebellum than did wild-type mice. More important, the cerebellum of Hipk2(-/-) mice showed a strong reduction in cerebellar Purkinje neurons during adulthood. Such reduction is due to the activation of an apoptotic process associated with a compromised proteasomal function followed by an unpredicted accumulation of ubiquitinated proteins. In particular, Purkinje cell dysfunction was characterized by a strong accumulation of ubiquitinated ß-catenin. Moreover, our behavioral tests showed that Hipk2(-/-) mice displayed muscle and balance impairment, indicative of Hipk2 involvement in cerebellar function. Taken together, these results indicate that Hipk2 exerts a relevant role in the survival of cerebellar Purkinje cells and that Hipk2 genetic ablation generates cerebellar dysfunction compatible with an ataxic-like phenotype.


Asunto(s)
Proteínas Serina-Treonina Quinasas/deficiencia , Células de Purkinje/fisiología , Animales , Apoptosis/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Humanos , Ratones , Ratones Noqueados , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Células de Purkinje/citología , Células de Purkinje/metabolismo , beta Catenina/metabolismo
6.
Minerva Med ; 68(46): 3237-8, 1977 Sep 30.
Artículo en Italiano | MEDLINE | ID: mdl-917340

RESUMEN

The results of a radiological study carried out on a limited number of patients undergoing mitral valvuloplasty are reported. The good results achieved with this technique are confirmed objectively.


Asunto(s)
Válvula Mitral/cirugía , Complicaciones Posoperatorias/diagnóstico por imagen , Adolescente , Adulto , Aortografía/métodos , Niño , Femenino , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Arteria Pulmonar/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA