Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mBio ; 9(5)2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30228240

RESUMEN

Biofilms play a critical role in the colonization, persistence, and pathogenesis of many human pathogens. Multiple mucosa-associated pathogens have evolved a mechanism of rapid adaptation, termed the phasevarion, which facilitates a coordinated regulation of numerous genes throughout the bacterial genome. This epigenetic regulation occurs via phase variation of a DNA methyltransferase, Mod. The phasevarion of nontypeable Haemophilus influenzae (NTHI) significantly affects the severity of experimental otitis media and regulates several disease-related processes. However, the role of the NTHI phasevarion in biofilm formation is unclear. The present study shows that the phasevarions of multiple NTHI clinical isolates regulate in vitro biofilm formation under disease-specific microenvironmental conditions. The impact of phasevarion regulation was greatest under alkaline conditions that mimic those known to occur in the middle ear during disease. Under alkaline conditions, NTHI strains that express the ModA2 methyltransferase formed biofilms with significantly greater biomass and less distinct architecture than those formed by a ModA2-deficient population. The biofilms formed by NTHI strains that express ModA2 also contained less extracellular DNA (eDNA) and significantly less extracellular HU, a DNABII DNA-binding protein critical for biofilm structural stability. Stable biofilm structure is critical for bacterial pathogenesis and persistence in multiple experimental models of disease. These results identify a role for the phasevarion in regulation of biofilm formation, a process integral to the chronic nature of many infections. Understanding the role of the phasevarion in biofilm formation is critical to the development of prevention and treatment strategies for these chronic diseases.IMPORTANCE Upper respiratory tract infections are the number one reason for a child to visit the emergency department, and otitis media (middle ear infection) ranks third overall. Biofilms contribute significantly to the chronic nature of bacterial respiratory tract infections, including otitis media, and make these diseases particularly difficult to treat. Several mucosa-associated human pathogens utilize a mechanism of rapid adaptation termed the phasevarion, or phasevariable regulon, to resist environmental and host immune pressures. In this study, we assessed the role of the phasevarion in regulation of biofilm formation by nontypeable Haemophilus influenzae (NTHI), which causes numerous respiratory tract diseases. We found that the NTHI phasevarion regulates biofilm structure and critical biofilm matrix components under disease-specific conditions. The findings of this work could be significant in the design of improved strategies against NTHI infections, as well as diseases due to other pathogens that utilize a phasevarion.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Epigénesis Genética , Regulación Bacteriana de la Expresión Génica , Haemophilus influenzae/genética , Álcalis , Infecciones por Haemophilus/microbiología , Humanos , Concentración de Iones de Hidrógeno , Otitis Media/microbiología , Fenotipo , Regulón/genética
2.
Sci Rep ; 7(1): 3161, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28600561

RESUMEN

Nontypeable Haemophilus influenzae (NTHI) is the causative agent of multiple respiratory tract infections. Several human pathogens, including NTHI, possess a novel genetic system, termed the phasevarion, which mediates a rapid and reversible change in the expression of many genes throughout the chromosome. This occurs by phase variation of a single gene (modA) that encodes a DNA methyltransferase and results in two phenotypically distinct subpopulations, ON and OFF. NTHI encounters many pressures within the various microenvironments of its human host as the disease course evolves from one of asymptomatic nasopharyngeal carriage to overt disease. These include oxidative stresses, which are present throughout the respiratory tract. To persist in the human nasopharynx and as a pathogen throughout the airways, NTHI must be able to mitigate toxic levels of oxidative stress. Here we show that expression of ModA2, modA2 ON status, resulted in increased sensitivity to oxidative stress. Furthermore, the modA2 ON status resulted in decreased resistance to neutrophil-mediated killing, which resulted in selection for the modA2 OFF subpopulation in an ex vivo survival assay. These findings highlight the importance of the ModA2 phasevarion in adaptation to innate host defences and reveal an additional microenvironmental pressure that selected for a specific ModA2 subpopulation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Regulación Bacteriana de la Expresión Génica , Infecciones por Haemophilus/inmunología , Haemophilus influenzae/genética , Neutrófilos/inmunología , Fagocitosis , Niño , Cromosomas Bacterianos , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Infecciones por Haemophilus/metabolismo , Infecciones por Haemophilus/microbiología , Haemophilus influenzae/enzimología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Viabilidad Microbiana , Nasofaringe/inmunología , Nasofaringe/microbiología , Neutrófilos/microbiología , Estrés Oxidativo , Cultivo Primario de Células , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA