Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 2083, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350276

RESUMEN

Sodium-ion batteries are a promising battery technology for their cost and sustainability. This has led to increasing interest in the development of new sodium-ion batteries and new analytical methods to non-invasively, directly visualise battery chemistry. Here we report operando 1H and 23Na nuclear magnetic resonance spectroscopy and imaging experiments to observe the speciation and distribution of sodium in the electrode and electrolyte during sodiation and desodiation of hard carbon in a sodium metal cell and a sodium-ion full-cell configuration. The evolution of the hard carbon sodiation and subsequent formation and evolution of sodium dendrites, upon over-sodiation of the hard carbon, are observed and mapped by 23Na nuclear magnetic resonance spectroscopy and imaging, and their three-dimensional microstructure visualised by 1H magnetic resonance imaging. We also observe, for the first time, the formation of metallic sodium species on hard carbon upon first charge (formation) in a full-cell configuration.

2.
Transp Porous Media ; 119(1): 77-94, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28794576

RESUMEN

We present an experimental and numerical study of immiscible two-phase flow of Newtonian fluids in three-dimensional (3D) porous media to find the relationship between the volumetric flow rate (Q) and the total pressure difference ([Formula: see text]) in the steady state. We show that in the regime where capillary forces compete with the viscous forces, the distribution of capillary barriers at the interfaces effectively creates a yield threshold ([Formula: see text]), making the fluids reminiscent of a Bingham viscoplastic fluid in the porous medium. In this regime, Q depends quadratically on an excess pressure drop ([Formula: see text]). While increasing the flow rate, there is a transition, beyond which the overall flow is Newtonian and the relationship is linear. In our experiments, we build a model porous medium using a column of glass beads transporting two fluids, deionized water and air. For the numerical study, reconstructed 3D pore networks from real core samples are considered and the transport of wetting and non-wetting fluids through the network is modeled by tracking the fluid interfaces with time. We find agreement between our numerical and experimental results. Our results match with the mean-field results reported earlier.

3.
Environ Sci Technol ; 51(3): 1562-1569, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28001377

RESUMEN

Precipitation reactions influence transport properties in porous media and can be coupled to advective and dispersive transport. For example, in subsurface environments, mixing of groundwater and injected solutions can induce mineral supersaturation of constituents and drive precipitation reactions. Magnetic resonance imaging (MRI) and microcomputed tomography (µ-CT) were employed as complementary techniques to evaluate advection, dispersion, and formation of precipitate in a 3D porous media flow cell. Two parallel fluids were flowed concentrically through packed glass beads under two relative flow rates with Na2CO3 and CaCl2 in the inner and outer fluids, respectively. CaCO3 became supersaturated and formed a precipitate at the mixing interface between the two solutions. Spatial maps of changing local velocity fields and dispersion in the flow cell were generated from MRI, while high resolution µ-CT imaging visualized the precipitate formed in the porous media. Formation of a precipitate minimized dispersive and advective transport between the two fluids and the shape of the precipitation front was influenced by the relative flow rates. This work demonstrates that the combined use of MRI and µ-CT can be highly complementary in the study of reactive transport processes in porous media.


Asunto(s)
Imagen por Resonancia Magnética , Microtomografía por Rayos X , Carbonato de Calcio , Agua Subterránea , Porosidad
4.
Angew Chem Int Ed Engl ; 55(32): 9394-7, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27329307

RESUMEN

Quantitative mapping of metal ions freely diffusing in solution is important across a diverse range of disciplines and is particularly significant for dissolution processes in batteries, metal corrosion, and electroplating/polishing of manufactured components. However, most current techniques are invasive, requiring sample extraction, insertion of an electrode, application of an electric potential or the inclusion of a molecular sensor. Thus, there is a need for techniques to visualize the distribution of metal ions non-invasively, in situ, quantitatively, in three dimensions (3D) and in real time. Here we have used (1) H magnetic resonance imaging (MRI) to make quantitative 3D maps showing evolution of the distribution of Cu(2+) ions, not directly visible by MRI, during the electrodissolution of copper, with high sensitivity and spatial resolution. The images are sensitive to the speciation of copper, the depletion of dissolved O2 in the electrolyte and show the dissolution of Cu(2+) ions is not uniform across the anode.

5.
Solid State Nucl Magn Reson ; 32(4): 118-28, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17996428

RESUMEN

A MR microscopy experiment is developed and used to characterize fluid ingress and microstructural transformation in degradable calcium polyphosphate (CPP) bioceramics. High-resolution (49microm) maps of fluid density and spin-lattice relaxation rate were obtained as a function of time for CPP immersed in phosphate buffered saline. These results demonstrate clear differences in fluid transport rates and solid matrix microstructure in two differing CPP formulations. CPP has been proposed as a potential implantable device for the delivery of pharmaceuticals, and the magnetic resonance imaging (MRI) data are used in conjunction with previously reported bulk elution results to develop a hypothesis explaining microstructural evolution in these materials. This type of non-destructive evaluation of the structure-transport of fluids in CPP is important to improved design of these functionalized biomaterials for long-term, localized delivery of sustained levels of therapeutic agents.


Asunto(s)
Materiales Biocompatibles/química , Calcio , Sistemas de Liberación de Medicamentos , Imagen por Resonancia Magnética/métodos , Polifosfatos , Geles/química , Porosidad , Prótesis e Implantes , Reología , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...