Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Pharmacol Transl Sci ; 7(9): 2784-2798, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39296263

RESUMEN

Linking an opioid to a nonopioid pharmacophore represents a promising approach for reducing opioid-induced side effects during pain management. Herein, we describe the optimization of the previously reported opioid-neurotensin hybrids (OPNT-hybrids), SBL-OPNT-05 & -10, containing the µ-/δ-opioid agonist H-Dmt-d-Arg-Aba-ß-Ala-NH2 and NT(8-13) analogs optimized for NTS2 affinity. In the present work, the constrained dipeptide Aba-ß-Ala was modified to investigate the optimal linker length between the two pharmacophores, as well as the effect of expanding the aromatic moiety within constrained dipeptide analogs, via the inclusion of a naphthyl moiety. Additionally, the N-terminal Arg residue of the NT(8-13) pharmacophore was substituted with ß3 hArg. For all analogs, affinity was determined at the MOP, DOP, NTS1, and NTS2 receptors. Several of the hybrid ligands showed a subnanomolar affinity for MOP, improved binding for DOP compared to SBL-OPNT-05 & -10, as well as an excellent NTS2-affinity with high selectivity over NTS1. Subsequently, the Gαi1 and ß-arrestin-2 pathways were evaluated for all hybrids, along with their stability in rat plasma. Upon MOP activation, SBL-OPNT-13 and -18 were the least effective at recruiting ß-arrestin-2 (E max = 17 and 12%, respectively), while both compounds were also found to be partial agonists at the Gαi1 pathway, despite improved potency compared to DAMGO. Importantly, these analogs also showed a half-life in rat plasma in excess of 48 h, making them valuable tools for future in vivo investigations.

2.
Pharmacol Res ; 209: 107408, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39307212

RESUMEN

Chronic pain, which affects more than one-third of the world's population, represents one of the greatest medical challenges of the 21st century, yet its effective management remains sub-optimal. The 'gold standard' for the treatment of moderate to severe pain consists of opioid ligands, such as morphine and fentanyl, that target the µ-opioid receptor (MOP). Paradoxically, these opioids also cause serious side effects, including constipation, respiratory depression, tolerance, and addiction. In addition, the development of opioid-use disorders, such as opioid diversion, misuse, and abuse, has led to the current opioid crisis, with dramatic increases in addiction, overdoses, and ultimately deaths. As pain is a complex, multidimensional experience involving a variety of pathways and mediators, dual or multitarget ligands that can bind to more than one receptor and exert complementary analgesic effects, represent a promising avenue for pain relief. Indeed, unlike monomodal therapeutic approaches, the modulation of several endogenous nociceptive systems can often result in an additive or even synergistic effect, thereby improving the analgesic-to-side-effect ratio. Here, we provide a comprehensive overview of research efforts towards the development of dual- or multi-targeting opioid/nonopioid hybrid ligands for effective and safer pain management. We reflect on the underpinning discovery rationale by discussing the design, medicinal chemistry, and in vivo pharmacological effects of multitarget antinociceptive compounds.

3.
Nat Struct Mol Biol ; 29(7): 688-697, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35817871

RESUMEN

The technique of cryogenic-electron microscopy (cryo-EM) has revolutionized the field of membrane protein structure and function with a focus on the dominantly observed molecular species. This report describes the structural characterization of a fully active human apelin receptor (APJR) complexed with heterotrimeric G protein observed in both 2:1 and 1:1 stoichiometric ratios. We use cryo-EM single-particle analysis to determine the structural details of both species from the same sample preparation. Protein preparations, in the presence of the endogenous peptide ligand ELA or a synthetic small molecule, both demonstrate these mixed stoichiometric states. Structural differences in G protein engagement between dimeric and monomeric APJR suggest a role for the stoichiometry of G protein-coupled receptor- (GPCR-)G protein coupling on downstream signaling and receptor pharmacology. Furthermore, a small, hydrophobic dimer interface provides a starting framework for additional class A GPCR dimerization studies. Together, these findings uncover a mechanism of versatile regulation through oligomerization by which GPCRs can modulate their signaling.


Asunto(s)
Proteínas de Unión al GTP , Receptores Acoplados a Proteínas G , Receptores de Apelina/química , Receptores de Apelina/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Unión al GTP/metabolismo , Humanos , Receptores Acoplados a Proteínas G/química , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA