Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Sci Nutr ; 12(5): 3663-3673, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38726406

RESUMEN

Muscadine grapes (Vitis rotundifolia Michx.) are delicate in nature with short shelf life. Postharvest technologies like modified atmosphere packaging (MAP) with reduced oxygen (O2) and elevated carbon dioxide (CO2) could increase the postharvest storage life with better quality. In the current experiment, physical and biochemical quality attributes of black and bronze cultivars of muscadine grapes ('Supreme' and 'Granny Val', respectively) were evaluated in active MAP. Fruit were packed in plastic trays, sealed with impermeable film, and CO2 was introduced into the package. The MAP was created by a rigid microperforated plastic patch coated with a proprietary semipermeable resin, which was applied over a hole in the tray; packages with the same size hole without a patch were the control. Fruit were stored at 4°C for 42 days (6 weeks). MAP resulted in significantly lower decay incidence and better retention of fruit firmness for up to 28 days of storage in both cultivars as well as reducing color changes in 'Supreme' fruit. Although MAP did not affect the biochemical quality of muscadine grapes, total antioxidants increased initially and then decreased during storage, irrespective of packaging treatments. A significant linear increase in total phenolic content was also found during storage, regardless of treatments applied. Overall, the results of the current study demonstrate that MAP can be an affective technology to increase storage duration of muscadines with better retention of physical quality, without affecting the biochemical attributes.

2.
J Sci Food Agric ; 104(4): 2198-2203, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37934131

RESUMEN

BACKGROUND: Achieving a larger berry size accompanied with even ripening are demanded by producers in growing muscadine cultivars. The current study aimed to evaluate the impact of fruit thinning on berry size and quality in two muscadine grape cultivars, 'Triumph' a bronze-fruited cultivar bearing hermaphrodite flowers, and 'Supreme' a dark black-fruited cultivar bearing female flowers. Thinning was performed before bunch closure and only one cluster per cane was retained. RESULTS: Results indicated a significant interaction of treatments and cultivars on berry weight and berry diameter. In 'Supreme,' berry weight and berry diameter were significantly increased where thinning was performed, and difference in plant yield between thinned and not thinned vines was not significant. For 'Triumph,' thinning had no significant impact on berry weight and diameter, but yield was ultimately reduced. Other physico-chemical characters were not affected by fruit thinning. However, differences were observed between both cultivars for these characters. The values of antioxidant scavenging activity (ASA) and total phenolic content (TPC) were 62.7% and 21.7% higher in 'Supreme' as compared to 'Triumph,' irrespective of the thinning treatments. Being a colored cultivar, 'Supreme' berries have higher anthocyanins than 'Triumph,' which has a negligible amount of anthocyanins. The ASA exhibited a strong positive correlation with TPC and anthocyanin content of muscadine grapes. There was also a significant positive correlation between TPC and anthocyanins. CONCLUSION: Cluster thinning of some muscadine grape cultivars may improve individual berry size without affecting overall plant yield or the fruit color, firmness, biochemical attributes and bioactive compounds. © 2023 Society of Chemical Industry.


Asunto(s)
Vitis , Vitis/química , Antocianinas/análisis , Frutas/química , Fenoles/análisis , Antioxidantes/química
3.
Front Plant Sci ; 13: 966789, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186023

RESUMEN

Storage at the putative chilling threshold temperature (CTT) to avoid chilling injury still limits postharvest handling of tropical fruit like banana in that ripening may occur at the CTT. To determine whether chilling injury (CI) symptoms would develop in mature green (MG) banana fruit if the CTT exposure was extended by inhibiting ethylene action and thus ripening, 1-methylcyclopropene (1-MCP) was applied. Individual 'fingers' from multiple 'clusters' of MG bananas were either immersed in water or 50 µg L-1 1-MCP (a.i.) solution and each treatment was divided into three subgroups for storage at 5.0°C (severe CI), 13.0°C (mild CI), or 14.0°C (CTT) ± 0.1°C. 1-MCP delayed ripening in terms of color change for 10 days for fruit stored at the CTT. Ethylene production by fruit at 5.0°C remained around 0.04 ng kg-1 s-1 with no obvious increase during 31-day storage. Ethylene production at 14.0°C (-1-MCP/+1-MCP) increased on Day 33 while increasing on Day 38 for 13.0°C fruit without 1-MCP and on Day 39 for fruit with 1-MCP. Peak climacteric ethylene occurred on Days 44 and 39 for 13.0 and 14.0°C fruit without 1-MCP, respectively, and on Days 59 and 51 for 13.0°C and 14.0°C 1-MCP-treated fruit, respectively. As hypothesized, longer exposure of MG banana fruit to the CTT of 14.0°C without onset of ripening as was allowed by prior 1-MCP treatment allowed CI to develop at that normally non-chilling temperature. Vascular browning was the first visual and most sensitive CI symptom in the experiment and was observed on Day 4 at 5.0°C, Day 10 at 13.0°C, Day 19 at 14.0°C without 1-MCP, and on Day 28 at 14.0°C with 1-MCP. Using a 1-MCP pre-treatment to remove the influence of ethylene from bananas stored at 13°C or 14°C also resulted in slight reduction in vascular browning severity. In conclusion, a putative safe temperature may become a CI temperature if the shelf-life-limiting factor is removed, allowing longer exposure. Chilling at the CTT caused relatively mild injury on fruit, and vascular browning is a sensitive indicator of CI status, while the light-adapted quantum yield of photosystem II [Y(II)] could be a non-destructive indicator of early CI stress in MG banana. Fruit at 13.0/14.0°C developed CI symptoms slightly later with 1-MCP than without 1-MCP. This suggests that ethylene might be involved in early CI symptom development.

4.
Front Nutr ; 9: 936932, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845799

RESUMEN

The efficacy of the signaling molecule melatonin for alleviating chilling injury (CI) in mango (Mangifera indica L.) fruit was studied to investigate the potential role of membrane integrity, energy charge, and ripening-related changes in the development of CI, and its management by melatonin. 'Langra' and 'Gulab Jamun' cultivar mango fruit was immersed in 100 µM of melatonin before storage for 28 days at 5°C with weekly transfers to shelf life at 25°C. CI symptom development was associated with compositional and enzymatic aspects of textural changes, cell membrane deterioration, and chemical energy status. Melatonin-treated 'Langra' fruit exhibited very low CI (5 vs. 21%) while 'Gulab Jamun' fruit exhibited higher CI (36 vs. 38%) during 28 days of storage at 5 ± 1°C. Higher chilling tolerance in melatonin-treated 'Langra' was associated with lower softening, ascribed to lower cell wall degrading exo- and endo-polygalacturonase, pectinesterase, and endo-1,4-ß-D-glucanase. In addition, lower membrane deteriorating-phospholipase D and lipoxygenase activity in melatonin-treated 'Langra' corresponded to lower palmitic and stearic acids and higher oleic, linoleic, and linolenic acids accumulation, thus, higher unsaturated/saturated fatty acids ratio. Additionally, there was a higher intracellular energy supply with melatonin, represented by a higher adenylate energy charge (AEC) arising from higher ATP and ADP and lower AMP accumulation, related to higher H+-ATPase, Ca2+-ATPase, succinate dehydrogenase, and cytochrome c oxidase activities. This study for the first time provides evidence, suggesting that melatonin alleviation of CI is related to the preservation of membrane integrity, thereby protecting the intracellular energy supply, and preserving cell wall integrity via impeding cell wall degrading enzyme activities.

5.
J Sci Food Agric ; 102(15): 7268-7281, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35750656

RESUMEN

BACKGROUND: 'Vegetative' and 'generative' tomato rootstock types have been proposed based on their different effects on tomato scion growth performance; however, their impacts on fruit quality have not been characterized. No study has been conducted in which the effects of rootstock on grape tomato quality attributes were assessed using sensory and instrumental methods of evaluation. Here, we conducted two experiments to examine the influence of 'DR0141TX', 'Estamino', and 'Multifort' rootstocks (vegetative, generative, and uncharacterized, respectively) on fruit quality properties of determinate and indeterminate grape tomato scions under organic production in high tunnels, including color, size, firmness, dry matter content, soluble solids content (SSC), titratable acidity (TA), pH, and consumer sensory attributes. RESULTS: In both experiments, grafting 'Sweet Hearts' indeterminate grape tomato onto 'DR0141TX', 'Estamino', or 'Multifort' increased fruit size and led to negligible effects on sensory attributes and instrumental measurements of fruit quality attributes. For 'BHN 1022' determinate grape tomato, rootstocks did not exhibit any major impact on fruit quality attributes in Experiment 1. However, fruit quality was compromised by grafting per se and rootstocks, especially 'Multifort', in Experiment 2, as reflected by reduced SSC, TA, and SSC/TA and lower scores for overall appearance, overall acceptability, tomato flavor, overall texture, and sweetness. CONCLUSION: In general, 'vegetative' and 'generative' rootstocks showed comparable effects on sensory evaluations and instrumental measurements of grape tomato quality attributes for both indeterminate and determinate scions. More research is needed to better characterize rootstock effects on fruit quality, including the flavor-related compounds under different growing conditions. © 2022 Society of Chemical Industry.


Asunto(s)
Solanum lycopersicum , Vitis , Solanum lycopersicum/química , Frutas/química , Gusto
6.
Front Plant Sci ; 13: 948656, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589098

RESUMEN

The appropriate selection of rootstock-scion combinations to improve yield and fully realize grafting benefits requires an in-depth understanding of rootstock-scion synergy. Toward this end, we grafted two determinate-type scions [grape tomato ('BHN 1022') and beefsteak tomato ('Skyway')] onto four rootstocks with different characteristics to examine plant growth, yield performance, biomass production, and fruit mineral nutrient composition. The study was conducted during two growing seasons (spring and fall plantings in Florida) under organic production in high tunnels with the non-grafted scions as controls. Rootstocks had previously been designated as either "generative" ('Estamino') or "vegetative" ('DR0141TX') by some commercial suppliers or had not been characterized ['RST-04-106-T' and 'SHIELD RZ F1 (61-802)']. Also, 'Estamino', 'DR0141TX', and 'RST-04-106-T' had been described as more vigorous than 'SHIELD RZ F1 (61-802)'. In both planting seasons (with low levels of soilborne disease pressure), the "vegetative" and "generative" rootstocks increased marketable and total fruit yields for both scions except for the beefsteak tomato grafted with the "vegetative" rootstock in fall planting. Positive effects of 'RST-04-106-T' on fruit yield varied with scions and planting seasons, and were most manifested when grafted with the beefsteak tomato scion in fall planting. 'SHIELD RZ F1 (61-802)' led to similar yields as the non-grafted controls except for grafting with the grape tomato scion in fall planting. For vegetative and fruit biomass, both the "vegetative" and "generative" rootstocks had positive impacts except for the beefsteak tomato in fall planting. For fruit mineral composition, the "vegetative" and "generative" rootstocks, both highly vigorous, consistently elevated fruit P, K, Ca, Zn, and Fe contents on a dry weight basis, whereas the other rootstocks did not. Overall, although the more vigorous rootstocks enhanced tomato plant productivity and fruit minerals, the evidence presented here does not support the suggestion that the so-called "vegetative" and "generative" rootstocks have different impacts on tomato scion yield, biomass production, or fruit mineral contents. More studies with different production systems and environmental conditions as well as contrasting scion genotypes are needed to further categorize the impacts of rootstocks with different vigor and other characteristics on plant biomass production and their implications on fruit yield development.

7.
Front Plant Sci ; 13: 948556, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589104

RESUMEN

Previous studies of tomato rootstock effects on fruit quality have yielded mixed results, and few attempts have been made to systematically examine the association between rootstock characteristics and tomato fruit quality. In this study, grape tomato ('BHN 1022') and beefsteak tomato ('Skyway') were grafted onto four rootstocks ['Estamino' (vigorous and "generative"), 'DR0141TX' (vigorous and "vegetative"), 'RST-04-106-T' (uncharacterized), and 'SHIELD RZ F1 (61-802)' (mid-vigor, uncharacterized)] and compared to non-grafted scion controls for two growing seasons (Spring and Fall in Florida) in organically managed high tunnels. In both seasons and for both scions, the two vigorous rootstocks, regardless of their designation as "vegetative" ('DR0141TX') or "generative" ('Estamino'), exhibited negative impacts on dry matter content, soluble solids content (SSC), SSC/titratable acidity (TA), lycopene, and ascorbic acid contents. Similar effects on fruit dry matter content and SSC were also observed with the 'RST-04-106-T' rootstock, although little to no change was seen with grafting onto 'SHIELD RZ F1 (61-802)'. Further studies are needed to elucidate the impact of rootstock vigor on tomato volatile profiles and consumer sensory acceptability in order to better determine whether any of the documented effects are of practical importance. On the other hand, the evident effects of scion cultivar and planting season on fruit quality were observed in most of the measurements. The scion by rootstock interaction affected fruit length, firmness, pH, and total phenolic content, while the planting season by rootstock interaction impacted fruit firmness, pH, total antioxidant capacity, and ascorbic acid and lycopene contents. The multivariate separation pattern of planting season, scion, and rootstock treatments as revealed by the canonical discriminant analysis further indicated that the influence of scion cultivar and planting season on tomato fruit quality could be much more pronounced than the rootstock effects. The fruit color (C* and H°), length and width, SSC, pH, total antioxidant capacity, ascorbic acid, and lycopene contents were the main attributes distinguishing different scion-planting season groups.

8.
Data Brief ; 36: 107123, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34041320

RESUMEN

Controlled postharvest stresses were used to induce the synthesis of carotenoids in tomato fruit. The accumulation of carotenoids was observed by the change of color of the tomato fruit from green to red. This change of color was monitored by the a* value and hue of the CIELAB* color coordinates in which the a* value increased following a sigmoidal curve and hue decreased in a similar trend. This sigmoidal curve marked the transition from chloroplasts to chromoplasts; in other words, the change of color tracked the disorganization or degreening, which was simultaneously accompanied by chromoplast biogenesis or red color development when tomatoes were at the Turning stage of development. The color data and photographic images provides information on how heat stress affected the synchronicity of chloroplast disorganization and chromoplast biogenesis in the early developmental stages of tomato ripening.

9.
Food Sci Nutr ; 9(1): 401-413, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33473302

RESUMEN

The subtropical peach cultivar UFSun grafted on five different rootstocks ('Flordaguard', 'Barton', 'MP-29', 'P-22', and 'Okinawa') was investigated in terms of the pomological and biochemical parameters of the fruit. Significant differences in fruit weight and size, soluble solids content, titratable acidity, and firmness were found among some rootstocks. The fruit length and diameter were different between the 'MP-29' and other rootstocks. It was also found that firmness of 'UFSun' fruit was affected by the rootstock. The highest firmness value was found when 'UFSun' was grafted on 'Flordaguard'.' 'MP-29' fruit had the highest soluble solids content, but there were no differences among the other rootstocks. 'UFSun' fruit from trees grafted on 'MP-29' were smaller and had the most intense color compared to 'UFSun' fruit from other rootstocks. Rootstock had a significant influence on total fruit phenolic compounds, anthocyanin content, and total antioxidant activity, with fruit from 'UFSun' on 'MP-29' having the highest values in all of them. A high correlation between fruit total antioxidant activity and total phenolic content was found. Overall, the results showed that 'MP-29' seems to induce the highest fruit quality, showing higher contents of total soluble solids, total titratable acidity, total phenolic compounds, total antioxidant activity, and total anthocyanin content. Selecting the right combination of the rootstock and cultivar is important for optimizing fruit quality parameters.

10.
Front Nutr ; 8: 805138, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096947

RESUMEN

In recent decades, increasing attention has been paid to food safety and organic horticulture. Thus, people are looking for natural products to manage plant diseases, pests, and weeds. Essential oils (EOs) or EO-based products are potentially promising candidates for biocontrol agents due to their safe, bioactive, biodegradable, ecologically, and economically viable properties. Born of necessity or commercial interest to satisfy market demand for natural products, this emerging technology is highly anticipated, but its application has been limited without the benefit of a thorough analysis of the scientific evidence on efficacy, scope, and mechanism of action. This review covers the uses of EOs as broad-spectrum biocontrol agents in both preharvest and postharvest systems. The known functions of EOs in suppressing fungi, bacteria, viruses, pests, and weeds are briefly summarized. Related results and possible modes of action from recent research are listed. The weaknesses of applying EOs are also discussed, such as high volatility and low stability, low water solubility, strong influence on organoleptic properties, and phytotoxic effects. Therefore, EO formulations and methods of incorporation to enhance the strengths and compensate for the shortages are outlined. This review also concludes with research directions needed to better understand and fully evaluate EOs and provides an outlook on the prospects for future applications of EOs in organic horticulture production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA