Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1894): 20230004, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38008122

RESUMEN

The Strongyloides genus of parasitic nematodes have a fascinating life cycle and biology, but are also important pathogens of people and a World Health Organization-defined neglected tropical disease. Here, a community of Strongyloides researchers have posed thirteen major questions about Strongyloides biology and infection that sets a Strongyloides research agenda for the future. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.


Asunto(s)
Estadios del Ciclo de Vida , Strongyloides , Animales , Humanos
2.
J Exp Med ; 220(12)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37773047

RESUMEN

Adaptation of immune cells to tissue-specific microenvironments is a crucial process in homeostasis and inflammation. Here, we show that murine effector type 2 innate lymphoid cells (ILC2s) from various organs are equally effective in repopulating ILC2 niches in other anatomical locations where they adapt tissue-specific phenotypes of target organs. Single-cell transcriptomics of ILC2 populations revealed upregulation of retinoic acid (RA) signaling in ILC2s during adaptation to the small intestinal microenvironment, and RA signaling mediated reprogramming of kidney effector ILC2s toward the small intestinal phenotype in vitro and in vivo. Inhibition of intestinal ILC2 adaptation by blocking RA signaling impaired worm expulsion during Strongyloides ratti infection, indicating functional importance of ILC2 tissue imprinting. In conclusion, this study highlights that effector ILC2s retain the ability to adapt to changing tissue-specific microenvironments, enabling them to exert tissue-specific functions, such as promoting control of intestinal helminth infections.


Asunto(s)
Inmunidad Innata , Tretinoina , Ratones , Animales , Tretinoina/farmacología , Linfocitos , Intestinos , Inflamación , Citocinas
3.
Front Immunol ; 14: 1182502, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469513

RESUMEN

The transcription factor Interferon Regulatory Factor 4 (IRF4) is central in control of T cell activation and differentiation. Deficiency of IRF4 results in severe immune deficiency and affects maturation and function of most if not all T cell subsets. Here we use mouse infection models for Citrobacter rodentium and Strongyloides ratti to analyze the function of IRF4 in T helper (Th) 17 and Th2 cell responses, respectively. IRF4 deficient mice were impaired in the control of both pathogens, failed to mount Th17 and Th2 cell responses and showed impaired recruitment of T helper cells to the intestine, the infection site of both pathogens. Compromised intestinal migration was associated with reduced expression of the intestinal homing receptors α4ß7 integrin, CCR9 and GPR15. Identification of IRF4 binding sites in the gene loci of these receptors suggests a direct control of their expression by IRF4. Competitive T cell transfer assays further demonstrated that loss of one functional Irf4 allele already affected intestinal accumulation and Th2 and Th17 cell generation, indicating that lower IRF4 levels are of disadvantage for Th2 and Th17 cell differentiation as well as their migration to the intestine. Conversion of peripheral CD4+ T cells from an Irf4 wildtype to an Irf4 heterozygous or from an Irf4 heterozygous to a homozygous mutant genotype after C. rodentium or S. ratti infection did not reduce their capacity to produce Th17 or Th2 cytokines and only partially affected their persistence in the intestine, revealing that IRF4 is not essential for maintenance of the Th2 and Th17 phenotype and for survival of these T helper cells in the intestine. In conclusion, we demonstrate that the expression levels of IRF4 determine Th2 and Th17 cell differentiation and their intestinal accumulation but that IRF4 expression is not crucial for Th2 and Th17 cell survival.


Asunto(s)
Linfocitos T CD4-Positivos , Movimiento Celular , Factores Reguladores del Interferón , Intestinos , Animales , Ratones , Regulación de la Expresión Génica , Factores Reguladores del Interferón/metabolismo , Células Th17 , Células Th2 , Linfocitos T CD4-Positivos/citología
4.
Immunol Lett ; 255: 62-66, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36889363

RESUMEN

Helminth parasites infect more than a quarter of the human population and inflict significant changes to the immunological status of their hosts. Several human studies report impaired responses to vaccinations in helminth-infected individuals. Analysing the impact of helminth infections on the efficacy of influenza vaccinations in the mouse system helps to elucidate the underlying immunological processes. Concurrent infection with the parasitic nematode Litomosoides sigmodontis reduced the quantity and quality of antibody responses to vaccination against seasonal influenza in BALB/c and C57BL/6 mice. This led to impaired vaccination-induced protection against challenge infections with the human pathogenic 2009 pandemic H1N1 influenza A virus in helminth-infected mice. Impaired responses were also observed if vaccinations were performed after immune-driven or drug-induced clearance of a previous helminth infection. Mechanistically, the suppression was associated with a systemic and sustained expansion of IL-10-producing CD4+CD49b+LAG-3+ type 1 regulatory T cells and partially abrogated by in vivo blockade of the IL-10 receptor. In summary, these findings raise the concern that individuals in helminth-endemic areas may not always benefit from vaccinations, even in the absence of an acute and diagnosable helminth infection.


Asunto(s)
Filariasis , Filarioidea , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Humanos , Ratones , Animales , Filariasis/parasitología , Filariasis/patología , Ratones Endogámicos C57BL , Vacunación , Ratones Endogámicos BALB C
7.
PLoS One ; 17(3): e0266456, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35358281

RESUMEN

The world health organization estimates that more than a quarter of the human population is infected with parasitic worms that are called helminths. Many helminths suppress the immune system of their hosts to prolong their survival. This helminth-induced immunosuppression "spills over" to unrelated antigens and can suppress the immune response to vaccination against other pathogens. Indeed, several human studies have reported a negative correlation between helminth infections and responses to vaccinations. Using mice that are infected with the parasitic nematode Litomosoides sigmodontis as a model for chronic human filarial infections, we reported previously that concurrent helminth infection impaired the vaccination-induced protection against the human pathogenic 2009 pandemic H1N1 influenza A virus (2009 pH1N1). Vaccinated, helminth-infected mice produced less neutralizing, influenza-specific antibodies than vaccinated naïve control mice. Consequently helminth-infected and vaccinated mice were not protected against a challenge infection with influenza virus but displayed high virus burden in the lung and a transient weight loss. In the current study we tried to improve the vaccination efficacy using vaccines that are licensed for humans. We either introduced a prime-boost vaccination regimen using the non-adjuvanted anti-influenza vaccine Begripal or employed the adjuvanted influenza vaccine Fluad. Although both strategies elevated the production of influenza-specific antibodies and protected mice from the transient weight loss that is caused by an influenza challenge infection, sterile immunity was not achieved. Helminth-infected vaccinated mice still had high virus burden in the lung while non-helminth-infected vaccinated mice rapidly cleared the virus. In summary we demonstrate that basic improvements of influenza vaccination regimen are not sufficient to confer sterile immunity on the background of helminth-induced immunosuppression, despite amelioration of pathology i.e. weight loss. Our findings highlight the risk of failed vaccinations in helminth-endemic areas, especially in light of the ongoing vaccination campaign to control the COVID-19 pandemic.


Asunto(s)
COVID-19 , Helmintiasis , Helmintos , Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Adyuvantes Inmunológicos , Animales , Anticuerpos Antivirales , Humanos , Gripe Humana/complicaciones , Gripe Humana/prevención & control , Ratones , Pandemias , Vacunación , Pérdida de Peso
8.
Front Immunol ; 12: 715766, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34475874

RESUMEN

Parasitic nematodes such as hookworms actively penetrate the skin of their hosts, encountering skin-resident innate immune cells that represent the host´s first line of defense. Here we use Strongyloides ratti as a model for an intestinal helminth parasite with tissue migrating stages. We show that interception and killing of migrating larvae in mice during a 1st infection occurred predominantly in skin and muscle tissue before larvae migrated via lung and head tissue to the intestine. Inhibition of larval migration was even more efficient in immune mice during a 2nd infection where larvae barely left the site of entry i.e. the foot. Using cell-deficient mice we show that interception in the tissue was predominantly mediated by neutrophils and eosinophils while basophils and mast cells were dispensable in vivo. Likewise, neutrophils and eosinophils inhibited S. ratti L3 motility in vitro in the context of ETosis. Thereby eosinophils were strictly dependent on the presence of anti-S. ratti antibodies while neutrophils inhibited L3 motility as such. Also, MPO and MMP-9 were released by neutrophils in response to L3 alone, but immune plasma further stimulated MPO release in an antibody-dependent manner. In summary, our findings highlight the central role of the skin as first line of defense against helminth parasites in both, innate and adaptive immunity.


Asunto(s)
Eosinófilos/inmunología , Trampas Extracelulares/inmunología , Interacciones Huésped-Parásitos/inmunología , Neutrófilos/inmunología , Strongyloides ratti/inmunología , Estrongiloidiasis/inmunología , Estrongiloidiasis/parasitología , Animales , Degranulación de la Célula/inmunología , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Trampas Extracelulares/parasitología , Inmunidad Innata , Larva/inmunología , Ratones , Estrongiloidiasis/metabolismo
9.
Sci Rep ; 11(1): 1536, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452272

RESUMEN

Helminths are large multicellular parasites that infect one quarter of the human population. To prolong their survival, helminths suppress the immune responses of their hosts. Strongyloides ratti delays its expulsion from the gut by induction of regulatory circuits in a mouse strain-specific manner: depletion of Foxp3+ regulatory T cells (Treg) improves the anti-S. ratti immunity in BALB/c but not in C57BL/6 mice. In the current study we compare the hierarchy of immunoregulatory pathways in BALB/c, C57BL/6 mice and their F1 progeny (BALB/c × C57BL/6). Using multicolor flow cytometry, we show that S. ratti induces a distinct pattern of inhibitory checkpoint receptors by Foxp3+ Treg and Foxp3- T cells. Intensity of expression was highest in C57BL/6 and lowest in BALB/c mice, while the F1 cross had an intermediate phenotype or resembled BALB/c mice. Treg subsets expanded during infection in all three mouse strains. Similar to BALB/c mice, depletion of Treg reduced intestinal parasite burden and increased mucosal mast cell activation in S. ratti-infected F1 mice. Our data indicate that Treg dominate the regulation of immune responses in BALB/c and F1 mice, while multiple regulatory layers exist in C57BL/6 mice that may compensate for the absence of Treg.


Asunto(s)
Estrongiloidiasis/inmunología , Linfocitos T Reguladores/inmunología , Animales , Femenino , Citometría de Flujo/métodos , Factores de Transcripción Forkhead/inmunología , Factores de Transcripción Forkhead/metabolismo , Inmunidad , Masculino , Mastocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fenotipo , Strongyloides ratti/patogenicidad , Estrongiloidiasis/parasitología , Estrongiloidiasis/veterinaria , Linfocitos T Reguladores/metabolismo , Células Th2/inmunología
10.
Front Immunol ; 12: 784141, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34992602

RESUMEN

Helminths still infect a quarter of the human population. They manage to establish chronic infections by downmodulating the immune system of their hosts. Consequently, the immune response of helminth-infected individuals to vaccinations may be impaired as well. Here we study the impact of helminth-induced immunomodulation on vaccination efficacy in the mouse system. We have previously shown that an underlying Litomosoides sigmodontis infection reduced the antibody (Ab) response to anti-influenza vaccination in the context of a systemic expansion of type 1 regulatory T cells (Tr1). Most important, vaccine-induced protection from a challenge infection with the 2009 pandemic H1N1 influenza A virus (2009 pH1N1) was impaired in vaccinated, L. sigmodontis-infected mice. Here, we aim at the restoration of vaccination efficacy by drug-induced deworming. Treatment of mice with Flubendazole (FBZ) resulted in elimination of viable L. sigmodontis parasites in the thoracic cavity after two weeks. Simultaneous FBZ-treatment and vaccination did not restore Ab responses or protection in L. sigmodontis-infected mice. Likewise, FBZ-treatment two weeks prior to vaccination did not significantly elevate the influenza-specific Ig response and did not protect mice from a challenge infection with 2009 pH1N1. Analysis of the regulatory T cell compartment revealed that L. sigmodontis-infected and FBZ-treated mice still displayed expanded Tr1 cell populations that may contribute to the sustained suppression of vaccination responses in successfully dewormed mice. To outcompete this sustained immunomodulation in formerly helminth-infected mice, we finally combined the drug-induced deworming with an improved vaccination regimen. Two injections with the non-adjuvanted anti-influenza vaccine Begripal conferred 60% protection while MF59-adjuvanted Fluad conferred 100% protection from a 2009 pH1N1 infection in FBZ-treated, formerly L. sigmodontis-infected mice. Of note, applying this improved prime-boost regimen did not restore protection in untreated L. sigmodontis-infected mice. In summary our findings highlight the risk of failed vaccinations due to helminth infection.


Asunto(s)
Antinematodos/administración & dosificación , Coinfección/terapia , Filariasis/terapia , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/terapia , Animales , Coinfección/inmunología , Coinfección/parasitología , Coinfección/virología , Modelos Animales de Enfermedad , Femenino , Filariasis/inmunología , Filariasis/parasitología , Filariasis/virología , Filarioidea/inmunología , Humanos , Inmunización Secundaria , Inmunomodulación , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Gripe Humana/parasitología , Gripe Humana/virología , Mebendazol/administración & dosificación , Mebendazol/análogos & derivados , Ratones , Ácaros/parasitología , Sigmodontinae/parasitología , Vacunación/métodos
11.
PLoS Pathog ; 16(12): e1009121, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33351862

RESUMEN

Parasitic helminths are sensed by the immune system via tissue-derived alarmins that promote the initiation of the appropriate type 2 immune responses. Here we establish the nuclear alarmin cytokine IL-33 as a non-redundant trigger of specifically IL-9-driven and mast cell-mediated immunity to the intestinal parasite Strongyloides ratti. Blockade of endogenous IL-33 using a helminth-derived IL-33 inhibitor elevated intestinal parasite burdens in the context of reduced mast cell activation while stabilization of endogenous IL-33 or application of recombinant IL-33 reciprocally reduced intestinal parasite burdens and increased mast cell activation. Using gene-deficient mice, we show that application of IL-33 triggered rapid mast cell-mediated expulsion of parasites directly in the intestine, independent of the adaptive immune system, basophils, eosinophils or Gr-1+ cells but dependent on functional IL-9 receptor and innate lymphoid cells (ILC). Thereby we connect the described axis of IL-33-mediated ILC2 expansion to the rapid initiation of IL-9-mediated and mast cell-driven intestinal anti-helminth immunity.


Asunto(s)
Interleucina-33/inmunología , Interleucina-9/inmunología , Parasitosis Intestinales/inmunología , Linfocitos/inmunología , Mastocitos/inmunología , Estrongiloidiasis/inmunología , Animales , Inmunidad Innata/inmunología , Intestinos/inmunología , Intestinos/parasitología , Ratones , Strongyloides ratti/inmunología
12.
PLoS Negl Trop Dis ; 14(7): e0008534, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32735561

RESUMEN

Mast cells are innate effector cells that due to their localization in the tissue form the first line of defense against parasites. We have previously shown that specifically mucosal mast cells were essential for the termination of the intestinal Strongyloides ratti infection. Here, we analyze the impact of mast cells on the immune response and defense against the tissue-dwelling filarial nematode Litomosoides sigmodontis using mast cell-deficient Cpa3cre mice. Despite an increase and an activation of mast cells at the site of infection in wildtype BALB/c mice the outcome of L. sigmodontis infection was not changed in mast cell-deficient BALB/c Cpa3cre mice. In Cpa3cre mice neither vascular permeability induced by blood-sucking mites nor the migration of L3 was altered compared to Cpa3 wildtype littermates. Worm burden in the thoracic cavity was alike in the presence and absence of mast cells during the entire course of infection. Although microfilaremiae in the peripheral blood increased in mast cell-deficient mice at some time points, the infection was cleared with comparable kinetics in the presence and absence of mast cells. Moreover, mast cell deficiency had no impact on the cytokine and antibody response to L. sigmodontis. In summary, our findings suggest that mast cells are not mandatory for the initiation of an appropriate immune response and host defense during L. sigmodontis infection in mice.


Asunto(s)
Filariasis/inmunología , Filarioidea/inmunología , Mastocitos/fisiología , Animales , Permeabilidad Capilar , Carboxipeptidasas A/genética , Carboxipeptidasas A/metabolismo , Filariasis/parasitología , Ratones , Ratones Endogámicos BALB C , Infestaciones por Ácaros , Mutación
13.
Cell Rep ; 29(8): 2243-2256.e4, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31747598

RESUMEN

Helminth parasites infect more than a quarter of the human population and inflict significant changes to the immunological status of their hosts. Here, we analyze the impact of helminth infections on the efficacy of vaccinations using Litomosoides sigmodontis-infected mice. Concurrent helminth infection reduces the quantity and quality of antibody responses to vaccination against seasonal influenza. Vaccination-induced protection against challenge infections with the human pathogenic 2009 pandemic H1N1 influenza A virus is drastically impaired in helminth-infected mice. Impaired responses are also observed if vaccinations are performed after clearance of a previous helminth infection, suggesting that individuals in helminth-endemic areas may not always benefit from vaccinations, even in the absence of an acute and diagnosable helminth infection. Mechanistically, the suppression is associated with a systemic and sustained expansion of interleukin (IL)-10-producing CD4+CD49+LAG-3+ type 1 regulatory T cells and partially abrogated by in vivo blockade of the IL-10 receptor.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Helmintos/inmunología , Helmintos/patogenicidad , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Gripe Humana/prevención & control , Linfocitos T/metabolismo , Vacunación/métodos , Animales , Formación de Anticuerpos/genética , Formación de Anticuerpos/fisiología , Factores de Transcripción Forkhead/genética , Humanos , Inmunomodulación/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/inmunología , Interleucina-10/metabolismo , Ratones , Estaciones del Año
14.
Nat Commun ; 10(1): 1621, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30962454

RESUMEN

The transcriptional regulator Rbpj is involved in T-helper (TH) subset polarization, but its function in Treg cells remains unclear. Here we show that Treg-specific Rbpj deletion leads to splenomegaly and lymphadenopathy despite increased numbers of Treg cells with a polyclonal TCR repertoire. A specific defect of Rbpj-deficient Treg cells in controlling TH2 polarization and B cell responses is observed, leading to the spontaneous formation of germinal centers and a TH2-associated immunoglobulin class switch. The observed phenotype is environment-dependent and can be induced by infection with parasitic nematodes. Rbpj-deficient Treg cells adopt open chromatin landscapes and gene expression profiles reminiscent of tissue-derived TH2-polarized Treg cells, with a prevailing signature of the transcription factor Gata-3. Taken together, our study suggests that Treg cells require Rbpj to specifically restrain TH2 responses, including their own excessive TH2-like differentiation potential.


Asunto(s)
Inmunidad Celular , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Estrongiloidiasis/inmunología , Linfocitos T Reguladores/inmunología , Células Th2/inmunología , Animales , Diferenciación Celular/inmunología , Modelos Animales de Enfermedad , Femenino , Factor de Transcripción GATA3/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/inmunología , Centro Germinal/inmunología , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/inmunología , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Strongyloides ratti/inmunología , Strongyloides ratti/patogenicidad , Estrongiloidiasis/parasitología , Linfocitos T Reguladores/metabolismo , Transcriptoma/inmunología
15.
PLoS Negl Trop Dis ; 12(11): e0006992, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30496188

RESUMEN

Infections with helminth parasites are controlled by a concerted action of innate and adaptive effector cells in the frame of a type 2 immune response. Basophils are innate effector cells that may also contribute to the initiation and amplification of adaptive immune responses. Here, we use constitutively basophil-deficient Mcpt8-Cre mice to analyze the impact of basophils during initiation and execution of the protective type 2 responses to both, a primary infection and a challenge infection of immune mice with the helminth parasite Strongyloides ratti. Basophil numbers expanded during parasite infection in blood and mesenteric lymph nodes. Basophil deficiency significantly elevated intestinal parasite numbers and fecal release of eggs and larvae during a primary infection. However, basophils were neither required for the initiation of a S. ratti-specific cellular and humoral type 2 immune response nor for the efficient protection against a challenge infection. Production of Th2 cytokines, IgG1 and IgE as well as mast cell activation were not reduced in basophil-deficient Mcpt8-Cre mice compared to basophil-competent Mcpt8-WT littermates. In addition, a challenge infection of immune basophil-deficient and WT mice resulted in a comparable reduction of tissue migrating larvae, parasites in the intestine and fecal release of eggs and L1 compared to mice infected for the first time. We have shown previously that S. ratti infection induced expansion of Foxp3+ regulatory T cells that interfered with efficient parasite expulsion. Here we show that depletion of regulatory T cells reduced intestinal parasite burden also in absence of basophils. Thus basophils were not targeted specifically by S. ratti-mediated immune evasive mechanisms. Our collective data rather suggests that basophils are non-redundant innate effector cells during murine Strongyloides infections that contribute to the early control of intestinal parasite burden.


Asunto(s)
Inmunidad Adaptativa , Basófilos/inmunología , Parasitosis Intestinales/inmunología , Strongyloides ratti/fisiología , Estrongiloidiasis/inmunología , Animales , Anticuerpos Antihelmínticos/inmunología , Citocinas/inmunología , Femenino , Humanos , Inmunidad Humoral , Inmunoglobulina E/inmunología , Parasitosis Intestinales/parasitología , Masculino , Mastocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Strongyloides ratti/genética , Estrongiloidiasis/parasitología , Linfocitos T Reguladores/inmunología , Células Th2/inmunología , Triptasas/genética , Triptasas/inmunología
16.
Sci Rep ; 8(1): 8636, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29872093

RESUMEN

IL-9 is a cytokine with pleiotropic function that mediates allergic inflammation and immunity to intestinal helminth parasites. Accumulating evidence suggests that IL-9 acts via both, initiation and regulation of adaptive immune responses and direct activation of intestinal effector pathways. Here we use IL-9 receptor deficient mice on BALB/c and C57BL/6 genetic background to dissect effector and regulatory functions of IL-9 during infection with the parasitic nematode Strongyloides ratti. IL-9 receptor-deficient mice displayed increased intestinal parasite burden and prolonged infection irrespective of the genetic background of the mice. Increased parasite burden was correlated to a reciprocally reduced early degranulation of mucosal mast cells, reduced intestinal IL-13 expression and caused by IL-9 receptor deficiency on hematopoietic cells. We observed additional significant changes in the adaptive immune response to S. ratti infection in the absence of the IL-9 receptor that depended on the mouse strain. However, the generation of protective memory to a second infection was intact in IL-9 receptor-deficient mice, irrespective of the genetic background. In summary, our results support a central role for IL-9 as an early mast cell activating effector cytokine during intestinal helminth infection while non-redundant functions in the initiation and amplification of adaptive immune responses were not apparent.


Asunto(s)
Interleucina-9/metabolismo , Mastocitos/inmunología , Strongyloides ratti/inmunología , Estrongiloidiasis/inmunología , Animales , Modelos Animales de Enfermedad , Factores Inmunológicos/metabolismo , Memoria Inmunológica , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Interleucina-9/deficiencia
17.
Immunohorizons ; 2(8): 296-304, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31022700

RESUMEN

Basophils are innate effector cells that contribute to allergic reactions and provide protection against parasites. Using basophil-deficient Mcpt8-cre mice, we have previously shown that these granulocytes contributed to the immune mediated early control of the gastrointestinal helminth Strongyloides ratti in mice. In this study, we analyze the impact of basophils on the immune response and defense against the tissue-dwelling filarial helminth parasite Litomosoides sigmodontis Although basophils and IgE increased at the site of infection, the absence of basophils did not change the outcome of L. sigmodontis infection. Worm burden in the thoracic cavity and microfilaremiae in the peripheral blood were alike in L. sigmodontis-infected Mcpt8-cre mice compared with Mcpt8 wild type littermates during the entire course of infection. Analysis of the cytokine and Ab response to L. sigmodontis revealed no consistent alterations in the absence of basophils. Furthermore, basophil-deficient and -competent mice were protected to the same extent during a secondary infection with L. sigmodontis In summary, our findings suggest that basophils are dispensable for the initiation of the appropriate immune response and host defense against L sigmodontis infection in mice.


Asunto(s)
Basófilos/inmunología , Filariasis/inmunología , Animales , Inmunidad Humoral , Parasitosis Intestinales/inmunología , Parasitosis Intestinales/parasitología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados
18.
Artículo en Inglés | MEDLINE | ID: mdl-28676845

RESUMEN

Infections by the soil-transmitted threadworm Strongyloides stercoralis affect 30-100 million people worldwide, predominantly in tropic and sub-tropic regions. Here we assessed the T helper cell phenotypes in threadworm-infected patients and experimental murine infections with focus on CD4+ T cells co-expressing markers of Th2 and Th1 differentiation. We show that mice infected with the close relative S. ratti generate strong Th2 responses characterized by the expansion of CD4+ GATA-3+ cells expressing IL-4/-5/-13 in blood, spleen, gut-draining lymph nodes, lung and gut tissue. In addition to conventional Th2 cells, significantly increased frequencies of GATA-3+T-bet+ Th2/1-hybrid cells were detected in all organs and co-expressed Th2- and Th1-cytokines at intermediate levels. Assessing the phenotype of blood-derived CD4+ T cells from South Indian patients infected with S. stercoralis and local uninfected control donors we found that GATA-3 expressing Th2 cells were significantly increased in the patient cohort, coinciding with elevated eosinophil and IgE/IgG4 levels. A fraction of IL-4+CD4+ T cells simultaneously expressed IFN-γ hence displaying a Th2/1 hybrid phenotype. In accordance with murine Th2/1 cells, human Th2/1 cells expressed intermediate levels of Th2 cytokines. Contrasting their murine counterparts, human Th2/1 hybrids were marked by high levels of IFN-γ and rather low GATA-3 expression. Assessing the effector function of murine Th2/1 cells in vitro we found that Th2/1 cells were qualified for driving the classical activation of macrophages. Furthermore, Th2/1 cells shared innate, cytokine-driven effector functions with Th1 cells. Hence, the key findings of our study are that T helper cells with combined characteristics of Th2 and Th1 cells are integral to immune responses of helminth-infected mice, but also occur in helminth-infected humans and we suggest that Th2/1 cells are poised for the instruction of balanced immune responses during nematode infections.


Asunto(s)
Células Híbridas/inmunología , Strongyloides ratti/patogenicidad , Estrongiloidiasis/inmunología , Células TH1/inmunología , Células Th2/inmunología , Adolescente , Adulto , Anciano , Animales , Linfocitos T CD4-Positivos/inmunología , Citocinas/sangre , Femenino , Factor de Transcripción GATA3/metabolismo , Humanos , Células Híbridas/metabolismo , Inmunoglobulina E/sangre , Inmunoglobulina G/sangre , India , Interferón gamma , Interleucina-13/sangre , Interleucina-4/sangre , Interleucina-5/sangre , Intestino Delgado/patología , Pulmón/patología , Ganglios Linfáticos/patología , Masculino , Ratones , Persona de Mediana Edad , Bazo/patología , Strongyloides ratti/genética , Estrongiloidiasis/patología , Células TH1/metabolismo , Células Th2/metabolismo , Adulto Joven
19.
Parasitology ; 144(3): 295-315, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-26905057

RESUMEN

The human pathogenic nematode Strongyloides stercoralis infects approximately 30-100 million people worldwide. Analysis of the adaptive immune response to S. stercoralis beyond descriptive studies is challenging, as no murine model for the complete infection cycle is available. However, the combined employment of different models each capable of modelling some features of S. stercoralis life cycle and pathology has advanced our understanding of the immunological mechanisms involved in host defence. Here we review: (i) studies using S. stercoralis third stage larvae implanted in diffusion chambers in the subcutaneous tissue of mice that allow analysis of the immune response to the human pathogenic Strongyloides species; (ii) studies using Strongyloides ratti and Strongyloides venezuelensis that infect mice and rats to extend the analysis to the parasites intestinal life stage and (iii) studies using S. stercoralis infected gerbils to analyse the hyperinfection syndrome, a severe complication of human strongyloidiasis that is not induced by rodent specific Strongyloides spp. We provide an overview of the information accumulated so far showing that Strongyloides spp. elicits a classical Th2 response that culminates in different, site specific, effector functions leading to either entrapment and killing of larvae in the tissues or expulsion of parasitic adults from the intestine.


Asunto(s)
Inmunidad Adaptativa , Enfermedades de los Roedores/inmunología , Strongyloides/inmunología , Strongyloides/patogenicidad , Estrongiloidiasis/veterinaria , Animales , Ratones , Ratas , Enfermedades de los Roedores/parasitología , Estrongiloidiasis/inmunología , Estrongiloidiasis/parasitología , Células Th2/inmunología
20.
PLoS Negl Trop Dis ; 10(12): e0005170, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27923052

RESUMEN

Worldwide more than 2 billion people are infected with helminths, predominantly in developing countries. Co-infections with viruses such as human immunodeficiency virus (HIV) are common due to the geographical overlap of these pathogens. Helminth and viral infections induce antagonistic cytokine responses in their hosts. Helminths shift the immune system to a type 2-dominated immune response, while viral infections skew the cytokine response towards a type 1 immune response. Moreover, chronic helminth infections are often associated with a generalized suppression of the immune system leading to prolonged parasite survival, and also to a reduced defence against unrelated pathogens. To test whether helminths affect the outcome of a viral infection we set up a filarial/retrovirus co-infection model in C57BL/6 mice. Although Friend virus (FV) infection altered the L. sigmodontis-specific immunoglobulin response towards a type I associated IgG2 isotype in co-infected mice, control of L. sigmodontis infection was not affected by a FV-superinfection. However, reciprocal control of FV infection was clearly impaired by concurrent L. sigmodontis infection. Spleen weight as an indicator of pathology and viral loads in spleen, lymph nodes (LN) and bone marrow (BM) were increased in L. sigmodontis/FV-co-infected mice compared to only FV-infected mice. Numbers of FV-specific CD8+ T cells as well as cytokine production by CD4+ and CD8+ cells were alike in co-infected and FV-infected mice. Increased viral loads in co-infected mice were associated with reduced titres of neutralising FV-specific IgG2b and IgG2c antibodies. In summary our findings suggest that helminth infection interfered with the control of retroviral infection by dampening the virus-specific neutralising antibody response.


Asunto(s)
Anticuerpos Antivirales/inmunología , Coinfección/inmunología , Filariasis/inmunología , Virus de la Leucemia Murina de Friend , Inmunoglobulina G/sangre , Infecciones por Retroviridae/inmunología , Carga Viral , Animales , Anticuerpos Antihelmínticos/sangre , Anticuerpos Antihelmínticos/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Médula Ósea/virología , Linfocitos T CD8-positivos/inmunología , Coinfección/parasitología , Coinfección/virología , Modelos Animales de Enfermedad , Filariasis/parasitología , Filariasis/virología , Filarioidea/inmunología , Filarioidea/aislamiento & purificación , Virus de la Leucemia Murina de Friend/inmunología , Virus de la Leucemia Murina de Friend/aislamiento & purificación , Humanos , Inmunoglobulina G/inmunología , Ratones , Ratones Endogámicos C57BL , Infecciones por Retroviridae/parasitología , Infecciones por Retroviridae/virología , Bazo/inmunología , Bazo/patología , Bazo/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...