Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(21): e2319652121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739805

RESUMEN

The last glacial period was punctuated by cold intervals in the North Atlantic region that culminated in extensive iceberg discharge events. These cold intervals, known as Heinrich Stadials, are associated with abrupt climate shifts worldwide. Here, we present CO2 measurements from the West Antarctic Ice Sheet Divide ice core across Heinrich Stadials 2 to 5 at decadal-scale resolution. Our results reveal multi-decadal-scale jumps in atmospheric CO2 concentrations within each Heinrich Stadial. The largest magnitude of change (14.0 ± 0.8 ppm within 55 ± 10 y) occurred during Heinrich Stadial 4. Abrupt rises in atmospheric CO2 are concurrent with jumps in atmospheric CH4 and abrupt changes in the water isotopologs in multiple Antarctic ice cores, the latter of which suggest rapid warming of both Antarctica and Southern Ocean vapor source regions. The synchroneity of these rapid shifts points to wind-driven upwelling of relatively warm, carbon-rich waters in the Southern Ocean, likely linked to a poleward intensification of the Southern Hemisphere westerly winds. Using an isotope-enabled atmospheric circulation model, we show that observed changes in Antarctic water isotopologs can be explained by abrupt and widespread Southern Ocean warming. Our work presents evidence for a multi-decadal- to century-scale response of the Southern Ocean to changes in atmospheric circulation, demonstrating the potential for dynamic changes in Southern Ocean biogeochemistry and circulation on human timescales. Furthermore, it suggests that anthropogenic CO2 uptake in the Southern Ocean may weaken with poleward strengthening westerlies today and into the future.

2.
Nat Commun ; 15(1): 1735, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443398

RESUMEN

Ice core records of carbon dioxide (CO2) throughout the last 2000 years provide context for the unprecedented anthropogenic rise in atmospheric CO2 and insights into global carbon cycle dynamics. Yet the atmospheric history of CO2 remains uncertain in some time intervals. Here we present measurements of CO2 and methane (CH4) in the Skytrain ice core from 1450 to 1700 CE. Results suggest a sudden decrease in CO2 around 1610 CE in one widely used record may be an artefact of a small number of anomalously low values. Our analysis supports a more gradual decrease in CO2 of 0.5 ppm per decade from 1516 to 1670 CE, with an inferred land carbon sink of 2.6 PgC per decade. This corroborates modelled scenarios of large-scale reorganisation of land use in the Americas following New World-Old World contact, whereas a rapid decrease in CO2 at 1610 CE is incompatible with even the most extreme land-use change scenarios.

3.
Nat Commun ; 14(1): 5432, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37669925

RESUMEN

High-resolution ice core records from coastal Antarctica are particularly useful to inform our understanding of environmental changes and their drivers. Here, we present a decadally resolved record of sea-salt sodium (a proxy for open-ocean area) and non-sea salt calcium (a proxy for continental dust) from the well-dated Roosevelt Island Climate Evolution (RICE) core, focusing on the time period between 40-26 ka BP. The RICE dust record exhibits an abrupt shift towards a higher mean dust concentration at 32 ka BP. Investigating existing ice-core records, we find this shift is a prominent feature across Antarctica. We propose that this shift is linked to an equatorward displacement of Southern Hemisphere westerly winds. Subsequent to the wind shift, data suggest a weakening of Southern Ocean upwelling and a decline of atmospheric CO2 to lower glacial values, hence making this shift an important glacial climate event with potentially important insights for future projections.

4.
Nature ; 617(7959): 100-104, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37095266

RESUMEN

During the last ice age, the Laurentide Ice Sheet exhibited extreme iceberg discharge events that are recorded in North Atlantic sediments1. These Heinrich events have far-reaching climate impacts, including widespread disruptions to hydrological and biogeochemical cycles2-4. They occurred during Heinrich stadials-cold periods with strongly weakened Atlantic overturning circulation5-7. Heinrich-type variability is not distinctive in Greenland water isotope ratios, a well-dated site temperature proxy8, complicating efforts to assess their regional climate impact and phasing against Antarctic climate change. Here we show that Heinrich events have no detectable temperature impact on Greenland and cooling occurs at the onset of several Heinrich stadials, and that both types of Heinrich variability have a distinct imprint on Antarctic climate. Antarctic ice cores show accelerated warming that is synchronous with increases in methane during Heinrich events, suggesting an atmospheric teleconnection9, despite the absence of a Greenland climate signal. Greenland ice-core nitrogen stable isotope ratios, a sensitive temperature proxy, indicate an abrupt cooling of about three degrees Celsius at the onset of Heinrich Stadial 1 (17.8 thousand years before present, where present is defined as 1950). Antarctic warming lags this cooling by 133 ± 93 years, consistent with an oceanic teleconnection. Paradoxically, proximal sites are less affected by Heinrich events than remote sites, suggesting spatially complex event dynamics.

5.
Nat Commun ; 13(1): 5443, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114188

RESUMEN

Here we use high-precision carbon isotope data (δ13C-CO2) to show atmospheric CO2 during Marine Isotope Stage 4 (MIS 4, ~70.5-59 ka) was controlled by a succession of millennial-scale processes. Enriched δ13C-CO2 during peak glaciation suggests increased ocean carbon storage. Variations in δ13C-CO2 in early MIS 4 suggest multiple processes were active during CO2 drawdown, potentially including decreased land carbon and decreased Southern Ocean air-sea gas exchange superposed on increased ocean carbon storage. CO2 remained low during MIS 4 while δ13C-CO2 fluctuations suggest changes in Southern Ocean and North Atlantic air-sea gas exchange. A 7 ppm increase in CO2 at the onset of Dansgaard-Oeschger event 19 (72.1 ka) and 27 ppm increase in CO2 during late MIS 4 (Heinrich Stadial 6, ~63.5-60 ka) involved additions of isotopically light carbon to the atmosphere. The terrestrial biosphere and Southern Ocean air-sea gas exchange are possible sources, with the latter event also involving decreased ocean carbon storage.


Asunto(s)
Dióxido de Carbono , Cubierta de Hielo , Carbono , Ciclo del Carbono , Isótopos de Carbono , Agua de Mar
6.
Sci Adv ; 7(51): eabj9341, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34910502

RESUMEN

The history of atmospheric oxygen (PO2) and the processes that act to regulate it remain enigmatic because of difficulties in quantitative reconstructions using indirect proxies. Here, we extend the ice-core record of PO2 using 1.5-million-year-old (Ma) discontinuous ice samples drilled from Allan Hills Blue Ice Area, East Antarctica. No statistically significant difference exists in PO2 between samples at 1.5 Ma and 810 thousand years (ka), suggesting that the Late-Pleistocene imbalance in O2 sources and sinks began around the time of the transition from 40- to 100-ka glacial cycles in the Mid-Pleistocene between ~1.2 Ma and 700 ka. The absence of a coeval secular increase in atmospheric CO2 over the past ~1 Ma requires negative feedback mechanisms such as Pco2-dependent silicate weathering. Fast processes must also act to suppress the immediate Pco2 increase because of the imbalance in O2 sinks over sources beginning in the Mid-Pleistocene.

7.
Science ; 372(6546): 1097-1101, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34083489

RESUMEN

Water-stable isotopes in polar ice cores are a widely used temperature proxy in paleoclimate reconstruction, yet calibration remains challenging in East Antarctica. Here, we reconstruct the magnitude and spatial pattern of Last Glacial Maximum surface cooling in Antarctica using borehole thermometry and firn properties in seven ice cores. West Antarctic sites cooled ~10°C relative to the preindustrial period. East Antarctic sites show a range from ~4° to ~7°C cooling, which is consistent with the results of global climate models when the effects of topographic changes indicated with ice core air-content data are included, but less than those indicated with the use of water-stable isotopes calibrated against modern spatial gradients. An altered Antarctic temperature inversion during the glacial reconciles our estimates with water-isotope observations.

8.
Nature ; 574(7780): 663-666, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31666720

RESUMEN

Over the past eight hundred thousand years, glacial-interglacial cycles oscillated with a period of one hundred thousand years ('100k world'1). Ice core and ocean sediment data have shown that atmospheric carbon dioxide, Antarctic temperature, deep ocean temperature, and global ice volume correlated strongly with each other in the 100k world2-6. Between about 2.8 and 1.2 million years ago, glacial cycles were smaller in magnitude and shorter in duration ('40k world'7). Proxy data from deep-sea sediments suggest that the variability of atmospheric carbon dioxide in the 40k world was also lower than in the 100k world8-10, but we do not have direct observations of atmospheric greenhouse gases from this period. Here we report the recovery of stratigraphically discontinuous ice more than two million years old from the Allan Hills Blue Ice Area, East Antarctica. Concentrations of carbon dioxide and methane in ice core samples older than two million years have been altered by respiration, but some younger samples are pristine. The recovered ice cores extend direct observations of atmospheric carbon dioxide, methane, and Antarctic temperature (based on the deuterium/hydrogen isotope ratio δDice, a proxy for regional temperature) into the 40k world. All climate properties before eight hundred thousand years ago fall within the envelope of observations from continuous deep Antarctic ice cores that characterize the 100k world. However, the lowest measured carbon dioxide and methane concentrations and Antarctic temperature in the 40k world are well above glacial values from the past eight hundred thousand years. Our results confirm that the amplitudes of glacial-interglacial variations in atmospheric greenhouse gases and Antarctic climate were reduced in the 40k world, and that the transition from the 40k to the 100k world was accompanied by a decline in minimum carbon dioxide concentrations during glacial maxima.

9.
Nature ; 558(7709): 200-208, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29899479

RESUMEN

A growing network of ice cores reveals the past 800,000 years of Antarctic climate and atmospheric composition. The data show tight links among greenhouse gases, aerosols and global climate on many timescales, demonstrate connections between Antarctica and distant locations, and reveal the extraordinary differences between the composition of our present atmosphere and its natural range of variability as revealed in the ice core record. Further coring in extremely challenging locations is now being planned, with the goal of finding older ice and resolving the mechanisms underlying the shift of glacial cycles from 40,000-year to 100,000-year cycles about a million years ago, one of the great mysteries of climate science.

10.
Proc Natl Acad Sci U S A ; 114(38): 10035-10040, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28874529

RESUMEN

Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics-similar to those associated with modern stratospheric ozone depletion over Antarctica-plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA