Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Reprod Update ; 26(2): 174-196, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32074269

RESUMEN

BACKGROUND: New therapeutic approaches in oncology have converted cancer from a certain death sentence to a chronic disease. However, there are still challenges to be overcome regarding the off-target toxicity of many of these treatments. Oncological therapies can lead to future infertility in women. Given this negative impact on long-term quality of life, fertility preservation is highly recommended. While gamete and ovarian tissue cryopreservation are the usual methods offered, new pharmacological-based options aiming to reduce ovarian damage during oncological treatment are very attractive. In this vein, advances in the field of transcriptomics and epigenomics have brought small noncoding RNAs, called microRNAs (miRNAs), into the spotlight in oncology. MicroRNAs also play a key role in follicle development as regulators of follicular growth, atresia and steroidogenesis. They are also involved in DNA damage repair responses and they can themselves be modulated during chemotherapy. For these reasons, miRNAs may be an interesting target to develop new protective therapies during oncological treatment. This review summarizes the physiological role of miRNAs in reproduction. Considering recently developed strategies based on miRNA therapy in oncology, we highlight their potential interest as a target in fertility preservation and propose future strategies to make the transition from bench to clinic. OBJECTIVE AND RATIONALE: How can miRNA therapeutic approaches be used to develop new adjuvant protective therapies to reduce the ovarian damage caused by cytotoxic oncological treatments? SEARCH METHODS: A systematic search of English language literature using PubMed and Google Scholar databases was performed through to 2019 describing the role of miRNAs in the ovary and their use for diagnosis and targeted therapy in oncology. Personal data illustrate miRNA therapeutic strategies to target the gonads and reduce chemotherapy-induced follicular damage. OUTCOMES: This review outlines the importance of miRNAs as gene regulators and emphasizes the fact that insights in oncology can inspire new adjuvant strategies in the field of onco-fertility. Recent improvements in nanotechnology offer the opportunity for drug development using next-generation miRNA-nanocarriers. WIDER IMPLICATIONS: Although there are still some barriers regarding the immunogenicity and toxicity of these treatments and there is still room for improvement concerning the specific delivery of miRNAs into the ovaries, we believe that, in the future, miRNAs can be developed as powerful and non-invasive tools for fertility preservation.


Asunto(s)
Preservación de la Fertilidad/tendencias , MicroARNs/fisiología , Técnicas de Diagnóstico Molecular/tendencias , Terapia Molecular Dirigida/tendencias , Ovario/fisiología , Criopreservación/métodos , Femenino , Fertilidad/genética , Fertilidad/fisiología , Preservación de la Fertilidad/métodos , Humanos , Infertilidad/diagnóstico , Infertilidad/genética , Infertilidad/terapia , MicroARNs/genética , Técnicas de Diagnóstico Molecular/métodos , Terapia Molecular Dirigida/métodos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Calidad de Vida , Terapias en Investigación/métodos , Terapias en Investigación/tendencias
2.
Chem Sci ; 9(24): 5479-5487, 2018 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-30079177

RESUMEN

The synthesis and characterization of a resorcinarene-based tetra(imidazole) ligand is reported. The properties of the corresponding ZnII complex are studied in depth, notably by NMR spectroscopy. In MeCN, acid-base titration reveals that one out of the four imidazole arms is hemi-labile and can be selectively protonated, thereby opening a coordination site in the exo position. Quite remarkably, the 4th imidazole arm promotes binding of an acidic molecule (a carboxylic acid, a ß-diketone or acetamide), by acting as an internal base, which allows guest binding as an anion to the metal center in the endo position. Most importantly, the presence of this labile imidazole arm makes the ZnII complex active for the catalyzed hydration of acetonitrile. It is proposed that it acts as a general base for activating a water molecule in the vicinity of the metal center during its nucleophilic attack to the endo-bound MeCN substrate. This system presents a unique degree of biomimetism when considering zinc enzymes: a pocket for guest binding, a similar first coordination sphere, a coordination site available for water activation in the cis position relative to the substrate and finally an internal imidazole residue that plays the role of a general base.

3.
Phys Chem Chem Phys ; 16(39): 21778-87, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25199500

RESUMEN

The molecular interactions of the Keggin polyoxometalate [Me2NH2]10[Ce(PW11O39)2] (1), which promotes selective hydrolysis of hen egg white lysozyme (HEWL) under physiological conditions, were investigated in detail by isothermal titration calorimetry (ITC), (31)P NMR and circular dichroism (CD) spectroscopy. ITC experiments showed that mixing of 1 and HEWL at pH 7.4 and 25 or 37 °C resulted in complexes having 1 : 1 and 2 : 1 POM : HEWL stoichiometries, respectively, and thermodynamic profiles are in agreement with binding in the vicinity of the Trp28-Val29 and Asn44-Arg45 peptide bonds, which were previously shown to undergo selective hydrolysis by 1. Mixing of HEWL with (NH4)4Ce(SO4)4·4H2O salt indicated the absence of any binding accentuating the importance of the polyoxometalate scaffold for selective interaction with the HEWL surface. In contrast, the lacunary Na9[A-α-PW9O34] polyoxometalate showed an increased binding stoichiometry as compared to 1. Increasing the ionic strength resulted in thermodynamic signatures which indicate preservation of the interaction at the Trp28-Val29 site, while interaction at the Asn44-Arg45 appears disrupted due to competition with the salt ions. Decreasing the pH to 4.4 at 37 °C resulted in energetic contributions which suggest that binding at the Trp28-Val29 site is favored, while more pronounced binding at the Asn44-Arg45 site was anticipated when the pH was increased to 9.2. The absence of binding between 1 and α-lactalbumin (α-LA), a protein which is highly isostructural to HEWL but with an overall negative charge, was confirmed at pH 7.4 and 37 °C. The influence of the pH on the binding between 1 and α-LA was investigated, demonstrating that at lower pH values, where α-LA becomes more positively charged, a 1 : 1 interaction with 1 is observed.


Asunto(s)
Cerio/química , Muramidasa/química , Compuestos Organometálicos/química , Termodinámica , Compuestos de Tungsteno/química , Cerio/metabolismo , Hidrólisis , Modelos Moleculares , Muramidasa/metabolismo , Compuestos Organometálicos/metabolismo
4.
J Colloid Interface Sci ; 399: 1-5, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23538051

RESUMEN

The citrate reduction of gold(III) in water is one of the most commonly used synthetic pathways for the preparation of gold colloids. In order to gain insight into the formation of gold nanoparticles (GNPs) using this method, the synthesis of GNPs was undertaken under different experimental conditions and monitored in operando by UV-Vis spectroscopy. These experiments highlight that citrate should be polydeprotonated and that Au(III) should not be polyhydroxylated in order to obtain GNPs with a narrow size distribution. Samples taken during the reaction were also characterized by Nuclear Magnetic Resonance Spectroscopy (NMR) to monitor the various reaction products as a function of time. Diffusion Ordered SpectroscopY (DOSY) experiments allowed us to identify slow diffusing citrate - Au(I) or Au(0) complexes which could play a role in the formation of GNPs.


Asunto(s)
Ácido Cítrico/química , Oro/química , Nanopartículas del Metal/química , Espectroscopía de Resonancia Magnética , Oxidación-Reducción , Espectrofotometría Ultravioleta
5.
Curr Med Chem ; 12(17): 2011-20, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16101501

RESUMEN

All biological phenomena depend on molecular recognition, which is either intermolecular like in ligand binding to a macromolecule or intramolecular like in protein folding. As a result, understanding the relationship between the structure of proteins and the energetics of their stability and binding with others (bio)molecules is a very interesting point in biochemistry and biotechnology. It is essential to the engineering of stable proteins and to the structure-based design of pharmaceutical ligands. The parameter generally used to characterize the stability of a system (the folded and unfolded state of the protein for example) is the equilibrium constant (K) or the free energy (deltaG(o)), which is the sum of enthalpic (deltaH(o)) and entropic (deltaS(o)) terms. These parameters are temperature dependent through the heat capacity change (deltaCp). The thermodynamic parameters deltaH(o) and deltaCp can be derived from spectroscopic experiments, using the van't Hoff method, or measured directly using calorimetry. Along with isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC) is a powerful method, less described than ITC, for measuring directly the thermodynamic parameters which characterize biomolecules. In this article, we summarize the principal thermodynamics parameters, describe the DSC approach and review some systems to which it has been applied. DSC is much used for the study of the stability and the folding of biomolecules, but it can also be applied in order to understand biomolecular interactions and can thus be an interesting technique in the process of drug design.


Asunto(s)
Rastreo Diferencial de Calorimetría , Diseño de Fármacos , Proteínas de Unión al ADN , Interacciones Farmacológicas , Unión Proteica , Pliegue de Proteína , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...