Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Front Cell Dev Biol ; 12: 1372573, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086659

RESUMEN

Although highly active antiretroviral therapy (HAART) has changed infection with human immunodeficiency virus (HIV) from a diagnosis with imminent mortality to a chronic illness, HIV positive patients who do not develop acquired immunodeficiency syndrome (AIDs) still suffer from a high rate of cardiac dysfunction and fibrosis. Regardless of viral load and CD count, HIV-associated cardiomyopathy (HIVAC) still causes a high rate of mortality and morbidity amongst HIV patients. While this is a well characterized clinical phenomena, the molecular mechanism of HIVAC is not well understood. In this review, we consolidate, analyze, and discuss current research on the intersection between autophagy and HIVAC. Multiple studies have linked dysregulation in various regulators and functional components of autophagy to HIV infection regardless of mode of viral entry, i.e., coronary, cardiac chamber, or pericardial space. HIV proteins, including negative regulatory factor (Nef), glycoprotein 120 (gp120), and transactivator (Tat), have been shown to interact with type II microtubule-associated protein-1 ß light chain (LC3-II), Rubiquitin, SQSTM1/p62, Rab7, autophagy-specific gene 7 (ATG7), and lysosomal-associated membrane protein 1 (LAMP1), all molecules critical to normal autophagy. HIV infection can also induce dysregulation of mitochondrial bioenergetics by altering production and equilibrium of adenosine triphosphate (ATP), mitochondrial reactive oxygen species (ROS), and calcium. These changes alter mitochondrial mass and morphology, which normally trigger autophagy to clear away dysfunctional organelles. However, with HIV infection also triggering autophagy dysfunction, these abnormal mitochondria accumulate and contribute to myocardial dysfunction. Likewise, use of HAART, azidothymidine and Abacavir, have been shown to induce cardiac dysfunction and fibrosis by inducing abnormal autophagy during antiretroviral therapy. Conversely, studies have shown that increasing autophagy can reduce the accumulation of dysfunctional mitochondria and restore cardiomyocyte function. Interestingly, Rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, has also been shown to reduce HIV-induced cytotoxicity by regulating autophagy-related proteins, making it a non-antiviral agent with the potential to treat HIVAC. In this review, we synthesize these findings to provide a better understanding of the role autophagy plays in HIVAC and discuss the potential pharmacologic targets unveiled by this research.

2.
Microb Cell Fact ; 23(1): 72, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429691

RESUMEN

BACKGROUND: Bacterial surface glycans are assembled by glycosyltransferases (GTs) that transfer sugar monomers to long-chained lipid carriers. Most bacteria employ the 55-carbon chain undecaprenyl phosphate (Und-P) to scaffold glycan assembly. The amount of Und-P available for glycan synthesis is thought to be limited by the rate of Und-P synthesis and by competition for Und-P between phosphoglycosyl transferases (PGTs) and GTs that prime glycan assembly (which we collectively refer to as PGT/GTs). While decreasing Und-P availability disrupts glycan synthesis and promotes cell death, less is known about the effects of increased Und-P availability. RESULTS: To determine if cells can maintain higher Und-P levels, we first reduced intracellular competition for Und-P by deleting all known non-essential PGT/GTs in the Gram-negative bacterium Escherichia coli (hereafter called ΔPGT/GT cells). We then increased the rate of Und-P synthesis in ΔPGT/GT cells by overexpressing the Und-P(P) synthase uppS from a plasmid (puppS). Und-P quantitation revealed that ΔPGT/GT/puppS cells can be induced to maintain 3-fold more Und-P than wild type cells. Next, we determined how increasing Und-P availability affects glycan expression. Interestingly, increasing Und-P availability increased endogenous and recombinant glycan expression. In particular, ΔPGT/GT/puppS cells could be induced to express 7-fold more capsule from Streptococcus pneumoniae serotype 4 than traditional E. coli cells used to express recombinant glycans. CONCLUSIONS: We demonstrate that the biotechnology standard bacterium E. coli can be engineered to maintain higher levels of Und-P. The results also strongly suggest that Und-P pathways can be engineered to increase the expression of potentially any Und-P-dependent polymer. Given that many bacterial glycans are central to the production of vaccines, diagnostics, and therapeutics, increasing Und-P availability should be a foremost consideration when designing bacterial glycan expression systems.


Asunto(s)
Escherichia coli , Fosfatos de Poliisoprenilo , Escherichia coli/genética , Polisacáridos , Biotecnología
3.
Proc Natl Acad Sci U S A ; 121(10): e2320859121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38412130

RESUMEN

Well-controlled repair mechanisms are involved in the maintenance of genomic stability, and their failure can precipitate DNA abnormalities and elevate tumor risk. In addition, the tumor microenvironment, enriched with factors inducing oxidative stress and affecting cell cycle checkpoints, intensifies DNA damage when repair pathways falter. Recent research has unveiled associations between certain bacteria, including Mycoplasmas, and various cancers, and the causative mechanism(s) are under active investigation. We previously showed that Mycoplasma fermentans DnaK, an HSP70 family chaperone protein, hampers the activity of proteins like PARP1 and p53, crucial for genomic integrity. Moreover, our analysis of its interactome in human cancer cell lines revealed DnaK's engagement with several components of DNA-repair machinery. Finally, in vivo experiments performed in our laboratory using a DnaK knock-in mouse model generated by our group demonstrated that DnaK exposure led to increased DNA copy number variants, indicative of genomic instability. We present here evidence that expression of DnaK is linked to increased i) incidence of tumors in vivo upon exposure to urethane, a DNA damaging agent; ii) spontaneous DNA damage ex vivo; and iii) expression of proinflammatory cytokines ex vivo, variations in reactive oxygen species levels, and increased ß-galactosidase activity across tissues. Moreover, DnaK was associated with increased centromeric instability. Overall, these findings highlight the significance of Mycoplasma DnaK in the etiology of cancer and other genetic disorders providing a promising target for prevention, diagnostics, and therapeutics.


Asunto(s)
Proteínas Bacterianas , Proteínas HSP70 de Choque Térmico , Mycoplasma , Neoplasias , Animales , Humanos , Ratones , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN , Daño del ADN , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Mycoplasma/fisiología , Neoplasias/metabolismo , Neoplasias/microbiología , Neoplasias/patología , Microambiente Tumoral
4.
Med Dosim ; 49(3): 229-231, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38262804

RESUMEN

Osteoarthritis (OA) is a painful, degenerative disease that affects the tissues of the joint spaces, such as the shoulder. Conventional medical treatment options, such as corticosteroid injections and anti-inflammatory medications, are not always sufficient to alleviate the symptoms from this disease. Low dose radiotherapy is a newer treatment option for patients with shoulder osteoarthritis and has shown positive outcomes. However, the problem is that there is a paucity of literature about treatment planning considerations for this new treatment option. The purpose of this case study was to provide an example of treatment planning techniques and considerations for shoulder osteoarthritis. Treatment techniques for shoulder LDRT, such as treatment field borders, prescribed dose, beam arrangements, appropriate beam energy, and special considerations are discussed.


Asunto(s)
Osteoartritis , Dosificación Radioterapéutica , Humanos , Osteoartritis/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Articulación del Hombro
5.
Cardiovasc Ther ; 2023: 7230325, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719172

RESUMEN

Introduction: Although a recent joint society scientific statement (the American Association of Cardiovascular Pulmonary Rehabilitation, the American Heart Association, and the American College of Cardiology) suggests home-based cardiac rehab (CR) is appropriate for low- and moderate-risk patients, there are no paradigms to define such individuals with coronary heart disease. Methods: We reviewed a decade of data from all patients with coronary heart disease enrolled in a single CR center (University of Michigan) to identify the prevalence of low-risk factors, which may inform on consideration for participation in alternative models of CR. Low-risk factors included not having any of the following: metabolic syndrome, presence of implantable cardioverter defibrillator or permanent pacemaker, active smoking, prior stroke, congestive heart failure, obesity, advanced renal disease, poor exercise capacity, peripheral arterial disease, angina, or clinical depression (MI'S SCOREPAD). We report on the proportion of participants with these risk factors and the proportion with all of these low-risk factors. Results: The mean age of CR participants (n = 1984) was 63 years; 25% were women, and 82% were non-Hispanic White. The mean number of low-risk factors was 8.5, which was similar in the 2011-2012 and 2018-2019 cohorts (8.5 vs. 8.3, respectively, P = 0.08). Additionally, 9.3% of the 2011-2012 cohort and 7.6% of the 2018-2019 cohort had all 11 of the low-risk factors. Conclusion: In this observational study, we provide a first paradigm of identifying factors among coronary heart disease patients that may be considered low-risk and likely high-gain for participation in alternative models of CR. Further work is needed to track clinical outcomes in patients with these factors to determine thresholds for enrolling participants in alternative forms of CR.


Asunto(s)
Rehabilitación Cardiaca , Enfermedad Coronaria , Estados Unidos , Humanos , Femenino , Persona de Mediana Edad , Masculino , Enfermedad Coronaria/diagnóstico , Enfermedad Coronaria/epidemiología , Factores de Riesgo , Angina de Pecho , Corazón , Estudios Observacionales como Asunto
7.
J Clin Med ; 12(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37629211

RESUMEN

Over 38 million people worldwide are living with HIV/AIDS, and more than half of them are affected by HIV-associated neurocognitive disorders (HAND). Such disorders are characterized by chronic neuroinflammation, neurotoxicity, and central nervous system deterioration, which lead to short- or long-term memory loss, cognitive impairment, and motor skill deficits that may show gender disparities. However, the underlying mechanisms remain unclear. Our previous study suggested that HIV-1 infection and viral protein R (Vpr) upregulate the SUR1-TRPM4 channel associated with neuroinflammation, which may contribute to HAND. The present study aimed to explore this relationship in a mouse model of HAND. This study employed the HIV transgenic Tg26 mouse model, comparing Tg26 mice with wildtype mice in various cognitive behavioral and memory tests, including locomotor activity tests, recognition memory tests, and spatial learning and memory tests. The study found that Tg26 mice exhibited impaired cognitive skills and reduced learning abilities compared to wildtype mice, particularly in spatial memory. Interestingly, male Tg26 mice displayed significant differences in spatial memory losses (p < 0.001), while no significant differences were identified in female mice. Consistent with our early results, SUR1-TRPM4 channels were upregulated in Tg26 mice along with glial fibrillary acidic protein (GFAP) and aquaporin 4 (AQP4), consistent with reactive astrocytosis and neuroinflammation. Corresponding reductions in neurosynaptic responses, as indicated by downregulation of Synapsin-1 (SYN1) and Synaptophysin (SYP), suggested synaptopathy as a possible mechanism underlying cognitive and motor skill deficits. In conclusion, our study suggests a possible relationship between SUR1-TRPM4-mediated neuroinflammation and synaptopathy with impairments of learning and memory in mice with HAND. These findings could help to develop new therapeutic strategies for individuals living with HAND.

8.
Proc Natl Acad Sci U S A ; 120(30): e2219897120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459550

RESUMEN

The human microbiota affects critical cellular functions, although the responsible mechanism(s) is still poorly understood. In this regard, we previously showed that Mycoplasma fermentans DnaK, an HSP70 chaperone protein, hampers the activity of important cellular proteins responsible for DNA integrity. Here, we describe a novel DnaK knock-in mouse model generated in our laboratory to study the effect of M. fermentans DnaK expression in vivo. By using an array-based comparative genomic hybridization assay, we demonstrate that exposure to DnaK was associated with a higher number of DNA copy number variants (CNVs) indicative of unbalanced chromosomal alterations, together with reduced fertility and a high rate of fetal abnormalities. Consistent with their implication in genetic disorders, one of these CNVs caused a homozygous Grid2 deletion, resulting in an aberrant ataxic phenotype that recapitulates the extensive biallelic deletion in the Grid2 gene classified in humans as autosomal recessive spinocerebellar ataxia 18. Our data highlight a connection between components of the human urogenital tract microbiota, namely Mycoplasmas, and genetic abnormalities in the form of DNA CNVs, with obvious relevant medical, diagnostic, and therapeutic implications.


Asunto(s)
Variaciones en el Número de Copia de ADN , Infecciones por Mycoplasma , Mycoplasma fermentans/genética , Homocigoto , Infecciones por Mycoplasma/genética , Infecciones por Mycoplasma/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL
9.
J Funct Morphol Kinesiol ; 8(2)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37092369

RESUMEN

The aim of this study was to systematically review the evidence on the outcomes of using different intensities of static stretching on range of motion (ROM) and strength. PubMed, Web of Science and Cochrane controlled trials databases were searched between October 2021 and February 2022 for studies that examined the effects of different static stretching intensities on range of motion and strength. Out of 6285 identified records, 18 studies were included in the review. Sixteen studies examined outcomes on ROM and four on strength (two studies included outcomes on both ROM and strength). All studies demonstrated that static stretching increased ROM; however, eight studies demonstrated that higher static stretching intensities led to larger increases in ROM. Two of the four studies demonstrated that strength decreased more following higher intensity stretching versus lower intensity stretching. It appears that higher intensity static stretching above the point of discomfort and pain may lead to greater increases in ROM, but further research is needed to confirm this. It is unclear if high-intensity static stretching leads to a larger acute decrease in strength than lower intensity static stretching.

10.
J Vis Exp ; (183)2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35604165

RESUMEN

Calcium induced calcium release signaling (CICR) plays a critical role in many biological processes. Every cellular activity from cell proliferation and apoptosis, development and ageing, to neuronal synaptic plasticity and regeneration have been associated with Ryanodine receptors (RyRs). Despite the importance of calcium signaling, the exact mechanism of its function in early development is unclear. As an organism with a short gestational period, the embryos of Drosophila melanogaster are prime study subjects for investigating the distribution and localization of CICR associated proteins and their regulators during development. However, because of their lipid-rich embryos and chitin-rich chorion, their utility is limited by the difficulty of mounting embryos on glass surfaces. In this work, we introduce a practical protocol that significantly enhances the attachment of Drosophila embryo onto slides and detail methods for successful histochemistry, immunohistochemistry, and in-situ hybridization. The chrome alum gelatin slide-coating method and embryo pre-embedding method dramatically increases the yield in studying Drosophila embryo protein and RNA expression. To demonstrate this approach, we studied DmFKBP12/Calstabin, a well-known regulator of RyR during early embryonic development of Drosophila melanogaster. We identified DmFKBP12 in as early as the syncytial blastoderm stage and report the dynamic expression pattern of DmFKBP12 during development: initially as an evenly distributed protein in the syncytial blastoderm, then preliminarily localizing to the basement layer of the cortex during cellular blastoderm, before distributing in the primitive neuronal and digestion architecture during the three-gem layer phase in early gastrulation. This distribution may explain the critical role RyR plays in the vital organ systems that originate in from these layers: the suboesophageal and supraesophageal ganglion, ventral nervous system, and musculoskeletal system.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Calcio , Drosophila melanogaster/genética , Embrión no Mamífero , Humanos , Inmunohistoquímica , ARN
11.
J Am Coll Health ; : 1-11, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35298366

RESUMEN

OBJECTIVE: The COVID-19 pandemic is expected to have serious negative consequences on mental and physical health, which may disproportionally affect young adults. The aim of this study was to understand short-term impacts on a population of students at a college that held in-person classes during the pandemic. PARTICIPANTS: This study was conducted at a moderately-sized private university in the southeastern United States where approximately 75% of students were enrolled in undergraduate degree programs and 25% in graduate degree programs. METHODS: A survey was created to assess anxiety and depression symptoms, psychotherapeutic medication use, healthy living, and coping skills. Links to the electronic form were distributed to students via email in Spring 2020 and Fall 2020. Participation was completely voluntary and responses were collected anonymously. RESULTS: The rate of anxiety symptoms in the study cohort was higher than the national average (31%) and increased between Spring 2020 (39%) and Fall 2020 (50%). Rates of psychotherapeutic medication use also rose, with benzodiazepine use increasing from 6% to 11% and antidepressant use increasing from 16% to 20%. Compared to the national average, fewer students in the study cohort rated their overall health as "good" or better (72-76% vs. 82%). Physical exercise, nutrition, and alcohol use worsened between Spring and Fall 2020. Problem-focused engagement was associated with significantly fewer anxiety and depression symptoms. Demographic factors such as gender, race, and sexual orientation interacted with several outcomes studied. CONCLUSIONS: Students at a private university that held in-person classes during the COVID-19 pandemic reported high rates of anxiety that increased between Spring and Fall 2020. Self-reported physical health was below average in Spring 2020 but improved in Fall 2020. Appropriate identification and management of the effects of pandemic-related stressors is critical during this uncertain time.Supplemental data for this article can be accessed online at https://doi.org/10.1080/07448481.2022.2052074 .

12.
Behav Brain Res ; 417: 113591, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34551347

RESUMEN

HIV-related neurocognitive impairment can be worsened by cigarette smoking and be more severe in women. Therefore, we analyzed the effects of sex on behavioral function in HIV transgenic (Tg) rats that were exposed to either nicotine alone, to smoke from either nicotine-containing or nicotine-free cigarettes, or non-exposed. The animals were then assessed on the open field test for the total distance traveled and for the fraction of the total distance traveled and the total time spent in the center of the field, and the results then compared to WT rats subjected to the same exposures and testing. Higher total distances indicate greater locomotor activity and a higher center field measures imply a lower anxiety state. Total distances were overall higher for female and for Tg rats exposed to nicotine-free CS. Also, the total distance and both center field measures were overall higher for female rats in the control and nicotine-free CS-exposed groups. This was observed specifically for WT females as compared to WT males and, for the center field measures, for WT females as compared to Tg males. No genotype or sex-related differences were found for rats in the nicotine-free cigarette smoke (CS) and nicotine-containing CS exposed groups. Therefore, nicotine exposure did not impact genotype- and sex-related differences in motor responses and anxiety levels that were found in the control state. However, exposure to the non-nicotine components of CS resulted in locomotor activation in the presence of the HIV genes and was anxiogenic in WT and Tg male animals.


Asunto(s)
Infecciones por VIH/complicaciones , Locomoción/efectos de los fármacos , Nicotiana/efectos adversos , Nicotina/farmacología , Humo/efectos adversos , Animales , Fumar Cigarrillos/efectos adversos , Femenino , Masculino , Ratas , Ratas Transgénicas , Factores Sexuales
13.
Methods Mol Biol ; 2409: 271-289, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34709649

RESUMEN

Dengue is one of the most prevalent infectious diseases around the world, present in all continents and mainly affecting developing countries. With few tools to fight and study this disease, it is imperative to have reliable animal models that not only recapitulate human disease but also contain human components to understand the pathogenic mechanism and immune responses, allowing the development of new treatments and vaccines against dengue. Humanized mice are a significant advance in the development of in vivo models to understanding the relation of the human immune system and target organs such as the liver during the infection by dengue virus, allowing basic and preclinical research. In this chapter, we describe the use of humanized NSG mice (huNSG) for the study of dengue disease. The first model describes reconstitution of the human immune system by transplanting human CD34+ stem cells in newborn or adult NSG mice. The second model combines the reconstitution with CD34+ stem cells with the transplant of human primary hepatocytes. This dual reconstituted animal will have two of the major players involved in the development of dengue infection. However, there are still more biological components missing in this model for dengue, but researchers continue working to improve the huNSG model to reconstitute other human components.


Asunto(s)
Virus del Dengue , Dengue , Animales , Bioensayo , Modelos Animales de Enfermedad , Ratones , Ratones SCID
14.
J Transl Med ; 19(1): 453, 2021 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-34717655

RESUMEN

HIV-1 reservoirs persist in the presence of combined antiretroviral therapy (cART). However, cART has transformed HIV-1 infection into a chronic disease marked by control of HIV-1 viral load and mortality reduction. Major challenges remain, including viral resistance upon termination of cART and persistence and identification of tissue distribution of HIV-1 reservoirs. Thus, appropriate animal models that best mimic HIV-1 pathogenesis are important, and the current study complements our previously published validation of the CD34+ hematopoietic humanized mouse model for this purpose. Here we analyze viral suppression using the recently developed combination of antiretrovirals that include Tenofovir Disoproxil (TDF), Emtricitabine (FTC), and Dolutegravir (DTG), a choice based on recent clinical outcomes showing its improved antiretroviral potency, CD4+ T cell preservation, tolerability, and prevention of viral drug resistance compared to that of previous regimens. We used quantitative Airyscan-based super resolution confocal microscopy of selected mouse tissues. Our data allowed us to identify specific solid tissue reservoirs of human T cells expressing the HIV-1 core protein p24. In particular, lymph node, brain, spleen, and liver were visualized as reservoirs for residual infected cells. Marked reduction of viral replication was evident. Considering that detection and visualization of cryptic sites of HIV-1 infection in tissues are clearly crucial steps towards HIV-1 eradication, appropriate animal models with pseudo-human immune systems are needed. In fact, current studies with humans and non-human primates have limited sample availability at multiple stages of infection and cannot easily analyze the effects of differently administered combined antiretroviral treatments on multiple tissues. That is easier to manage when working with humanized mouse models, although we realize the limitations due to low human cell recovery and thus the number of cells available for thorough and comprehensive analyses. Nonetheless, our data further confirm that the CD34+ humanized mouse model is a potentially useful pre-clinical model to study and improve current anti-HIV-1 therapies.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , VIH-1 , Animales , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Emtricitabina/farmacología , Emtricitabina/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Compuestos Heterocíclicos con 3 Anillos , Ratones , Oxazinas , Piperazinas , Piridonas , Tenofovir/farmacología , Tenofovir/uso terapéutico , Carga Viral
16.
Sci Rep ; 11(1): 18519, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34531413

RESUMEN

The combined antiretroviral therapy era has significantly increased the lifespan of people with HIV (PWH), turning a fatal disease to a chronic one. However, this lower but persistent level of HIV infection increases the susceptibility of HIV-associated neurocognitive disorder (HAND). Therefore, research is currently seeking improved treatment for this complication of HIV. In PWH, low levels of brain derived neurotrophic factor (BDNF) has been associated with worse neurocognitive impairment. Hence, BDNF administration has been gaining relevance as a possible adjunct therapy for HAND. However, systemic administration of BDNF is impractical because of poor pharmacological profile. Therefore, we investigated the neuroprotective effects of BDNF-mimicking 7,8 dihydroxyflavone (DHF), a bioactive high-affinity TrkB agonist, in the memory-involved hippocampus and brain cortex of Tg26 mice, a murine model for HAND. In these brain regions, we observed astrogliosis, increased expression of chemokine HIV-1 coreceptors CXCR4 and CCR5, neuroinflammation, and mitochondrial damage. Hippocampi and cortices of DHF treated mice exhibited a reversal of these pathological changes, suggesting the therapeutic potential of DHF in HAND. Moreover, our data indicates that DHF increases the phosphorylation of TrkB, providing new insights about the role of the TrkB-Akt-NFkB signaling pathway in mediating these pathological hallmarks. These findings guide future research as DHF shows promise as a TrkB agonist treatment for HAND patients in adjunction to the current antiviral therapies.


Asunto(s)
Complejo SIDA Demencia/patología , Encéfalo/efectos de los fármacos , Flavonas/farmacología , Glicoproteínas de Membrana/agonistas , Fármacos Neuroprotectores/farmacología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Gliosis/patología , Ratones , Fosforilación/efectos de los fármacos , Proteínas Tirosina Quinasas
17.
Dent J (Basel) ; 9(9)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34562980

RESUMEN

Oral and dental diseases are a major global burden, the most common non-communicable diseases (NCDs), and may even affect an individual's general quality of life and health. The most prevalent dental and oral health conditions are tooth decay (otherwise referred to as dental caries/cavities), oral cancers, gingivitis, periodontitis, periodontal (gum) disease, Noma, oro-dental trauma, oral manifestations of HIV, sensitive teeth, cracked teeth, broken teeth, and congenital anomalies such as cleft lip and palate. Herbs have been utilized for hundreds of years in traditional Chinese, African and Indian medicine and even in some Western countries, for the treatment of oral and dental conditions including but not limited to dental caries, gingivitis and toothaches, dental pulpitis, halitosis (bad breath), mucositis, sore throat, oral wound infections, and periodontal abscesses. Herbs have also been used as plaque removers (chew sticks), antimicrobials, analgesics, anti-inflammatory agents, and antiseptics. Cannabis sativa L. in particular has been utilized in traditional Asian medicine for tooth-pain management, prevention of dental caries and reduction in gum inflammation. The distribution of cannabinoid (CB) receptors in the mouth suggest that the endocannabinoid system may be a target for the treatment of oral and dental diseases. Most recently, interest has been geared toward the use of Cannabidiol (CBD), one of several secondary metabolites produced by C. sativa L. CBD is a known anti-inflammatory, analgesic, anxiolytic, anti-microbial and anti-cancer agent, and as a result, may have therapeutic potential against conditions such burning mouth syndrome, dental anxiety, gingivitis, and possible oral cancer. Other major secondary metabolites of C. sativa L. such as terpenes and flavonoids also share anti-inflammatory, analgesic, anxiolytic and anti-microbial properties and may also have dental and oral applications. This review will investigate the potential of secondary metabolites of C. sativa L. in the treatment of dental and oral diseases.

18.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34502379

RESUMEN

The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems. In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development. The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development. The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases. This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as "C. sativa L." or "medical cannabis"), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.


Asunto(s)
Cannabinoides/farmacología , Endocannabinoides/metabolismo , Endocannabinoides/fisiología , Ansiedad/tratamiento farmacológico , Agonistas de Receptores de Cannabinoides/farmacología , Cannabis/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Depresión/tratamiento farmacológico , Conducta Alimentaria/efectos de los fármacos , Homeostasis/efectos de los fármacos , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neurogénesis/efectos de los fármacos , Dolor/tratamiento farmacológico , Receptores de Cannabinoides/metabolismo
19.
Crit Care ; 25(1): 295, 2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404458

RESUMEN

BACKGROUND: Intensive Care Resources are heavily utilized during the COVID-19 pandemic. However, risk stratification and prediction of SARS-CoV-2 patient clinical outcomes upon ICU admission remain inadequate. This study aimed to develop a machine learning model, based on retrospective & prospective clinical data, to stratify patient risk and predict ICU survival and outcomes. METHODS: A Germany-wide electronic registry was established to pseudonymously collect admission, therapeutic and discharge information of SARS-CoV-2 ICU patients retrospectively and prospectively. Machine learning approaches were evaluated for the accuracy and interpretability of predictions. The Explainable Boosting Machine approach was selected as the most suitable method. Individual, non-linear shape functions for predictive parameters and parameter interactions are reported. RESULTS: 1039 patients were included in the Explainable Boosting Machine model, 596 patients retrospectively collected, and 443 patients prospectively collected. The model for prediction of general ICU outcome was shown to be more reliable to predict "survival". Age, inflammatory and thrombotic activity, and severity of ARDS at ICU admission were shown to be predictive of ICU survival. Patients' age, pulmonary dysfunction and transfer from an external institution were predictors for ECMO therapy. The interaction of patient age with D-dimer levels on admission and creatinine levels with SOFA score without GCS were predictors for renal replacement therapy. CONCLUSIONS: Using Explainable Boosting Machine analysis, we confirmed and weighed previously reported and identified novel predictors for outcome in critically ill COVID-19 patients. Using this strategy, predictive modeling of COVID-19 ICU patient outcomes can be performed overcoming the limitations of linear regression models. Trial registration "ClinicalTrials" (clinicaltrials.gov) under NCT04455451.


Asunto(s)
COVID-19/epidemiología , Enfermedad Crítica/epidemiología , Registros Electrónicos de Salud/estadística & datos numéricos , Unidades de Cuidados Intensivos , Aprendizaje Automático , Adulto , Anciano , COVID-19/terapia , Estudios de Cohortes , Enfermedad Crítica/terapia , Servicio de Urgencia en Hospital , Femenino , Alemania , Humanos , Masculino , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud
20.
Plants (Basel) ; 10(2)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672441

RESUMEN

The cannabis plant (Cannabis sativa L.) produces an estimated 545 chemical compounds of different biogenetic classes. In addition to economic value, many of these phytochemicals have medicinal and physiological activity. The plant is most popularly known for its two most-prominent and most-studied secondary metabolites-Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). Both Δ9-THC and CBD have a wide therapeutic window across many ailments and form part of a class of secondary metabolites called cannabinoids-of which approximately over 104 exist. This review will focus on non-cannabinoid metabolites of Cannabis sativa that also have therapeutic potential, some of which share medicinal properties similar to those of cannabinoids. The most notable of these non-cannabinoid phytochemicals are flavonoids and terpenes. We will also discuss future directions in cannabis research and development of cannabis-based pharmaceuticals. Caflanone, a flavonoid molecule with selective activity against the human viruses including the coronavirus OC43 (HCov-OC43) that is responsible for COVID-19, and certain cancers, is one of the most promising non-cannabinoid molecules that is being advanced into clinical trials. As validated by thousands of years of the use of cannabis for medicinal purposes, vast anecdotal evidence abounds on the medicinal benefits of the plant. These benefits are attributed to the many phytochemicals in this plant, including non-cannabinoids. The most promising non-cannabinoids with potential to alleviate global disease burdens are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA