Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 33(14)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34937011

RESUMEN

In-plane InGaAs/Ga(As)Sb heterojunction tunnel diodes are fabricated by selective area molecular beam epitaxy with two different architectures: either radial InGaAs core/Ga(As)Sb shell nanowires or axial InGaAs/GaSb heterojunctions. In the former case, we unveil the impact of strain relaxation and alloy composition fluctuations at the nanoscale on the tunneling properties of the diodes, whereas in the latter case we demonstrate that template assisted molecular beam epitaxy can be used to achieve a very precise control of tunnel diodes dimensions at the nanoscale with a scalable process. In both cases, negative differential resistances with large peak current densities are achieved.

2.
Nanotechnology ; 29(30): 305705, 2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-29738312

RESUMEN

In-plane InSb nanostructures are grown on a semi-insulating GaAs substrate using an AlGaSb buffer layer covered with a patterned SiO2 mask and selective area molecular beam epitaxy. The shape of these nanostructures is defined by the aperture in the silicon dioxide layer used as a selective mask thanks to the use of an atomic hydrogen flux during the growth. Transmission electron microscopy reveals that the mismatch accommodation between InSb and GaAs is obtained in two steps via the formation of an array of misfit dislocations both at the AlGaSb buffer layer/GaAs and at the InSb nanostructures/AlGaSb interfaces. Several micron long in-plane nanowires (NWs) can be achieved as well as more complex nanostructures such as branched NWs. The electrical properties of the material are investigated by the characterization of an InSb NW MOSFET down to 77 K. The resulting room temperature field effect mobility values are comparable with those reported on back-gated MOSFETs based on InSb NWs obtained by vapor liquid solid growth or electrodeposition. This growth method paves the way to the fabrication of complex InSb-based nanostructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA