RESUMEN
Leishmania donovani and Leishmania braziliensis grown in culture formed millimolar concentrations of allopurinol ribonucleoside 5'-monophosphate from [6-14C]allopurinol. In addition, allopurinol 1-ribonucleoside, oxipurinol riboside 5'-monophosphate, and three new metabolites of allopurinol, namely, 4-aminopyrazolo(3,4-d)pyrimidine ribonucleoside 5'-monophosphate and the corresponding di- and triphosphates (1-ribosyl 4-aminopyrazolo(3,4-d)pyrimidine 5'-diphosphate and 1-ribosyl 4-aminopyrazolo(3,4-d)pyrimidine 5'-triphosphate) were identified in the parasitic cells. They were formed via a unique amination reaction from 1-ribosyl allopurinol 5'-phosphate, analogous to the conversion of IMP to AMP. [6-14C]Allopurinol was incorporated into RNA of L. donovani in the form of 4-aminopyrazolo(3,4-d)pyrimidine. Adenine reversed the growth inhibition of allopurinol and prevented its metabolism to all of the ribonucleotide metabolites. L. donovani was 2- to 4-fold more active in its metabolism of allopurinol to ribonucleotides than L. braziliensis. 4-Aminopyrazolo(3,4-d)pyrimidine inhibited cell growth and resulted in high intracellular levels of 1-ribosyl allopurinol 5'-phosphate and smaller amounts of the 4-aminopyrazolo(3,4-d)pyrimidine ribonucleotides. The metabolism of allopurinol to 4-aminopyrazolo(3,4-d)pyrimidine ribonucleotides and its resultant cytotoxicity occurs in these parasitic protozoans, but not in mammalian cells.