Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 112: 104012, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32949867

RESUMEN

It is well known that long term stability in zirconia has been a problem because of the structural alteration from stabilized tetragonal zirconia to monoclinic that leads to fracture in implants. Microwave (MW) assisted sol-gel synthesis is employed in the present work to prepare stabilize zirconia nanoparticles. ZrOCl2.8H2O is used as a precursor whereas de-ionized water is used as a solvent. Power of microwave radiations is varied in the range of 100-1000W. Zirconia nanoparticles have been characterized under as-synthesized, 6- and 12-months' room temperature (RT) aged conditions. Metastable phase (MP) of zirconia, appearing under as-synthesized conditions, transforms to phase pure tetragonal zirconia (t-ZrO2) after RT aging that was prepared with MW powers of 100, 200 and 700-1000W. Whereas, MP transforms to mixed tetragonal-monoclinic phases at microwave powers of 300-600W after RT aging. XPS results show presence of oxygen-deficient state of ZrO2 lattice along with surface defects contributing towards the tetragonal zirconia phase under all conditions. Value of dielectric constant (i.e. ~11-12 at log f = 4.0), hardness (~13 GPa) and fracture toughness observed under all conditions are well in agreement to be used for biological implants. Disks of aged t-ZrO2 nanoparticles are checked for their biodegradation test by dipping in simulated body fluid for several weeks. ZrO2, with 26 weeks of immersion, shows small loss in hardness and weight. Stabilized tetragonal zirconia shows strong anti-oxidant activity. Stabilized ZrO2 nanoparticles presented strong antibacterial activity against both gram positive (S. aureus, Bacillus) and gram negative (E. coli) bacteria. Thus, structural and mechanical stability of zirconia (checked after 6 and 12 months) make this material highly beneficial for long term use in biomedical applications.


Asunto(s)
Microondas , Nanopartículas , Escherichia coli , Staphylococcus aureus , Circonio
2.
J Mech Behav Biomed Mater ; 104: 103621, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32174388

RESUMEN

Use of ceramic coatings has increased dramatically in orthopedics by improving their wear resistance and consequent long-term stability. Such stability involves not only the strength of material but also its resistance toward bacterial attacks. Amongst all ceramics, zirconia is selected in the present study due to its white color and high value of hardness making it a potential candidate to be used as implants and their coatings. In the present study effect of varying microwave powers (i.e. 100W, 200W, 300W, 400W, 500W, 600W, 700W, 800W, 900W and 1000W) on sol-gel synthesized glucose and fructose added zirconia coatings has been investigated. Formation of mixed tetragonal - monoclinic phases has been observed at relatively low microwave powers, i.e. 100-500W. However, at 600-1000W phase pure tetragonal zirconia is observed without any post heat treatment. FTIR analysis confirms formation of tetragonal phase of zirconia at 600-1000W microwave power. XPS results confirm the binding energies of Zr 3d and O 1s of microwave assisted zirconia coatings. High value of transmittance, i.e. ~90%, is observed at higher microwave powers. Variation in microwave powers is observed to tune the energy band gap of zirconia coatings in the range of 4.2-5.1 eV. Dielectric constant of 8-10 at log f = 4 is observed. High value of hardness and fracture toughness i.e. 1231 HV and 24.85 MPam-1/2, respectively, is observed for stabilized tetragonal zirconia coatings. Stabilized glucose fructose added zirconia shows strong antioxidant activity. Zirconia coatings are tested against Staphylococcus aureus bacteria for their potential application to treat bone infection. Results suggest that stabilized tetragonal zirconia can be successfully employed for orthopedic coatings.


Asunto(s)
Fructosa , Glucosa , Antibacterianos , Cerámica , Ensayo de Materiales , Circonio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA