Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Microbiol Spectr ; 12(3): e0277323, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38329351

RESUMEN

A significant increase of hospital-acquired bacterial infections during the COVID-19 pandemic has become an urgent medical problem. Clostridioides difficile is an urgent antibiotic-resistant bacterial pathogen and a leading causative agent of nosocomial infections. The increasing recurrence of C. difficile infection and antibiotic resistance in C. difficile has led to an unmet need for the discovery of new compounds distinctly different from present antimicrobials, while antimicrobial peptides as promising alternatives to conventional antibiotics have attracted growing interest recently. Protein synthesis is an essential metabolic process in all bacteria and a validated antibiotic target. Initiation factor 1 from C. difficile (Cd-IF1) is the smallest of the three initiation factors that acts to establish the 30S initiation complex to initiate translation during protein biosynthesis. Here, we report the solution nuclear magnetic resonance (NMR) structure of Cd-IF1 which adopts a typical ß-barrel fold and consists of a five-stranded ß-sheet and one short α-helix arranged in the sequential order ß1-ß2-ß3-α1-ß4-ß5. The interaction of Cd-IF1 with the 30S ribosomal subunit was studied by NMR titration for the construction of a structural model of Cd-IF1 binding with the 30S subunit. The short α-helix in IF1 was found to be critical for IF1 ribosomal binding. A peptide derived from this α-helix was tested and displayed a high ability to inhibit the growth of C. difficile and other bacterial strains. These results provide a clue for the rational design of new antimicrobials.IMPORTANCEBacterial infections continue to represent a major worldwide health hazard due to the emergence of drug-resistant strains. Clostridioides difficile is a common nosocomial pathogen and the causative agent in many infections resulting in an increase in morbidity and mortality. Bacterial protein synthesis is an essential metabolic process and an important target for antibiotic development; however, the precise structural mechanism underlying the process in C. difficile remains unknown. This study reports the solution structure of C. difficile translation initiation factor 1 (IF1) and its interaction with the 30S ribosomal subunit. A short α-helix in IF1 structure was identified as critically important for ribosomal binding and function in regulating the translation initiation, which allowed a rational design of a new peptide. The peptide demonstrated a high ability to inhibit bacterial growth with broad-spectrum antibacterial activity. This study provides a new clue for the rational design of new antimicrobials against bacterial infections.


Asunto(s)
Infecciones Bacterianas , Clostridioides difficile , Humanos , Péptidos Antimicrobianos , Cadmio , Pandemias , Factores de Iniciación de Péptidos , Antibacterianos/farmacología
2.
ACS Infect Dis ; 7(12): 3161-3167, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34709785

RESUMEN

Bacterial infections continue to represent a major worldwide health hazard following the emergence of drug-resistant pathogenic strains. Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial infections with increased morbidity and mortality. The increasing antibiotic resistance in P. aeruginosa has led to an unmet need for discovery of new antibiotic candidates. Bacterial protein synthesis is an essential metabolic process and a validated target for antibiotic development; however, the precise structural mechanism in P. aeruginosa remains unknown. In this work, the interaction of P. aeruginosa initiation factor 1 (IF1) with the 30S ribosomal subunit was studied by NMR, which enabled us to construct a structure of IF1-bound 30S complex. A short α-helix in IF1 was found to be critical for IF1 ribosomal binding and function. A peptide derived from this α-helix was tested and displayed a high ability to inhibit bacterial growth. These results provide a clue for rational design of new antimicrobials.


Asunto(s)
Péptidos Antimicrobianos , Pseudomonas aeruginosa , Factores de Iniciación de Péptidos , Subunidades Ribosómicas , Ribosomas
3.
JMIR Form Res ; 5(3): e20175, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33661120

RESUMEN

BACKGROUND: Novel wearable biosensors, ubiquitous smartphone ownership, and telemedicine are converging to enable new paradigms of clinical research. A new generation of continuous glucose monitoring (CGM) devices provides access to clinical-grade measurement of interstitial glucose levels. Adoption of these sensors has become widespread for the management of type 1 diabetes and is accelerating in type 2 diabetes. In parallel, individuals are adopting health-related smartphone-based apps to monitor and manage care. OBJECTIVE: We conducted a proof-of-concept study to investigate the potential of collecting robust, annotated, real-time clinical study measures of glucose levels without clinic visits. METHODS: Self-administered meal-tolerance tests were conducted to assess the impact of a proprietary synbiotic medical food on glucose control in a 6-week, double-blind, placebo-controlled, 2×2 cross-over pilot study (n=6). The primary endpoint was incremental glucose measured using Abbott Freestyle Libre CGM devices associated with a smartphone app that provided a visual diet log. RESULTS: All subjects completed the study and mastered CGM device usage. Over 40 days, 3000 data points on average per subject were collected across three sensors. No adverse events were recorded, and subjects reported general satisfaction with sensor management, the study product, and the smartphone app, with an average self-reported satisfaction score of 8.25/10. Despite a lack of sufficient power to achieve statistical significance, we demonstrated that we can detect meaningful changes in the postprandial glucose response in real-world settings, pointing to the merits of larger studies in the future. CONCLUSIONS: We have shown that CGM devices can provide a comprehensive picture of glucose control without clinic visits. CGM device usage in conjunction with our custom smartphone app can lower the participation burden for subjects while reducing study costs, and allows for robust integration of multiple valuable data types with glucose levels remotely. TRIAL REGISTRATION: ClinicalTrials.gov NCT04424888; http://clinicaltrials.gov/ct2/show/NCT04424888.

4.
Artículo en Inglés | MEDLINE | ID: mdl-32675291

RESUMEN

INTRODUCTION: A growing body of evidence suggests that specific, naturally occurring gut bacteria are under-represented in the intestinal tracts of subjects with type 2 diabetes (T2D) and that their functions, like gut barrier stability and butyrate production, are important to glucose and insulin homeostasis. The objective of this study was to test the hypothesis that enteral exposure to microbes with these proposed functions can safely improve clinical measures of glycemic control and thereby play a role in the overall dietary management of diabetes. RESEARCH DESIGN AND METHODS: We evaluated whether a probiotic comprised of these anaerobic bacteria would enhance dietary management by (1) manufacturing two novel probiotic formulations containing three (WBF-010) or five (WBF-011) distinct strains in a Current Good Manufacturing Practice (cGMP) facility, (2) establishing consistent live-cell concentrations, (3) confirming safety at target concentrations dispensed in both animal and human studies and (4) conducting a 12-week parallel, double-blind, placebo-controlled, proof-of-concept study in which subjects previously diagnosed with T2D (n=76) were randomly assigned to a two times a day regimen of placebo, WBF-010 or WBF-011. RESULTS: No safety or tolerability issues were observed. Compared with the placebo group, subjects administered WBF-011 (which contains inulin, Akkermansia muciniphila, Clostridium beijerinckii, Clostridium butyricum, Bifidobacterium infantis and Anaerobutyricum hallii) significantly improved in the primary outcome, glucose total area under the curve (AUC): -36.1 mg/dL/180 min, p=0.0500 and also improved in secondary outcomes, glycated hemoglobin (A1c): -0.6, glucose incremental-AUC: -28.6 mg/dL/180 min. CONCLUSIONS: To our knowledge, this is the first randomized controlled trial to administer four of the five strains to human subjects with T2D. This proof-of-concept study (clinical trial number NCT03893422) shows that the intervention was safe and well tolerated and that supplementation with WBF-011 improves postprandial glucose control. The limited sample size and intersubject variability justifies future studies designed to confirm and expand on these observations.


Asunto(s)
Diabetes Mellitus Tipo 2 , Probióticos , Glucemia , Clostridiales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Hipoglucemiantes/uso terapéutico , Probióticos/uso terapéutico
5.
SLAS Discov ; 25(9): 1072-1086, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32583746

RESUMEN

Pseudomonas aeruginosa is a multidrug-resistant (MDR) pathogen and a causative agent of both nosocomial and community-acquired infections. The genes (tyrS and tyrZ) encoding both forms of P. aeruginosa tyrosyl-tRNA synthetase (TyrRS-S and TyrRS-Z) were cloned and the resulting proteins purified. TyrRS-S and TyrRS-Z were kinetically evaluated and the Km values for interaction with Tyr, ATP, and tRNATyr were 172, 204, and 1.5 µM and 29, 496, and 1.9 µM, respectively. The kcatobs values for interaction with Tyr, ATP, and tRNATyr were calculated to be 3.8, 1.0, and 0.2 s-1 and 3.1, 3.8, and 1.9 s-1, respectively. Using scintillation proximity assay (SPA) technology, a druglike 2000-compound library was screened to identify inhibitors of the enzymes. Four compounds (BCD37H06, BCD38C11, BCD49D09, and BCD54B04) were identified with inhibitory activity against TyrRS-S. BCD38C11 also inhibited TyrRS-Z. The IC50 values for BCD37H06, BCD38C11, BCD49D09, and BCD54B04 against TyrRS-S were 24, 71, 65, and 50 µM, respectively, while the IC50 value for BCD38C11 against TyrRS-Z was 241 µM. Minimum inhibitory concentrations (MICs) were determined against a panel of clinically important pathogens. All four compounds were observed to inhibit the growth of cultures of both Gram-positive and Gram-negative bacteria organisms with a bacteriostatic mode of action. When tested against human cell cultures, none of the compounds were toxic at concentrations up to 400 µg/mL. In mechanism of inhibition studies, BCD38C11 and BCD49D09 selectively inhibited TyrRS activity by competing with ATP for binding. BCD37H06 and BCD54B04 inhibited TyrRS activity by a mechanism other than substrate competition.


Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Pseudomonas aeruginosa/genética , Tirosina-ARNt Ligasa/antagonistas & inhibidores , Antibacterianos/química , Infecciones Comunitarias Adquiridas/genética , Infecciones Comunitarias Adquiridas/microbiología , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Inhibidores Enzimáticos/química , Humanos , Cinética , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/patogenicidad , Tirosina-ARNt Ligasa/genética
6.
Biomol NMR Assign ; 14(1): 93-97, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31902070

RESUMEN

Translation initiation factor 3 (IF3) is one of the three protein factors that bind to the small ribosomal subunit and it is required for the initiation of protein biosynthesis in bacteria. IF3 contains two independent domains, N- and C-terminal domains, which are connected by a lysine-rich interdomain linker. IF3 undergoes large-scale movements and conformational changes upon binding to the 30S subunit and also during the functional regulation of initiation. However, the precise dynamic interplay of the two domains and the molecular mechanism of IF3 is not well understood. A high-resolution 3D structure of a complete IF3 in bacteria has not been solved. Pseudomonas aeruginosa, a gram-negative opportunistic pathogen, is a primary cause of nosocomial infections in humans. Here we report the NMR chemical shift assignments of IF3 from P. aeruginosa as the first step toward NMR structure determination and interaction studies. Secondary structure analyses deduced from the NMR chemical shift data identified nine ß-strands and four α-helices arranged in the sequential order ß1-ß2-α1-ß3-ß4-α2-ß5-α3-ß6-α4-ß7-ß8-ß9.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13 , Resonancia Magnética Nuclear Biomolecular , Factor 3 Procariótico de Iniciación/química , Espectroscopía de Protones por Resonancia Magnética , Pseudomonas aeruginosa/metabolismo , Isótopos de Nitrógeno , Estructura Secundaria de Proteína
7.
SLAS Discov ; 25(1): 57-69, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31498734

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that causes nosocomial infections and has highly developed systems for acquiring resistance against numerous antibiotics. The gene (lysS) encoding P. aeruginosa lysyl-tRNA synthetase (LysRS) was cloned and overexpressed, and the resulting protein was purified to 98% homogeneity. LysRS was kinetically evaluated, and the Km values for the interaction with lysine, adenosine triphosphate (ATP), and tRNALys were determined to be 45.5, 627, and 3.3 µM, respectively. The kcatobs values were calculated to be 13, 22.8, and 0.35 s-1, resulting in kcatobs/KM values of 0.29, 0.036, and 0.11 s-1µM-1, respectively. Using scintillation proximity assay technology, natural product and synthetic compound libraries were screened to identify inhibitors of function of the enzyme. Three compounds (BM01D09, BT06F11, and BT08F04) were identified with inhibitory activity against LysRS. The IC50 values were 17, 30, and 27 µM for each compound, respectively. The minimum inhibitory concentrations were determined against a panel of clinically important pathogens. All three compounds were observed to inhibit the growth of gram-positive organisms with a bacteriostatic mode of action. However, two compounds (BT06F11 and BT08F04) were bactericidal against cultures of gram-negative bacteria. When tested against human cell cultures, BT06F11 was not toxic at any concentration tested, and BM01D09 was toxic only at elevated levels. However, BT08F04 displayed a CC50 of 61 µg/mL. In studies of the mechanism of inhibition, BM01D09 inhibited LysRS activity by competing with ATP for binding, and BT08F04 was competitive with ATP and uncompetitive with the amino acid. BT06F11 inhibited LysRS activity by a mechanism other than substrate competition.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Lisina-ARNt Ligasa/antagonistas & inhibidores , Lisina-ARNt Ligasa/química , Pseudomonas aeruginosa/enzimología , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Estructura Molecular , Pseudomonas aeruginosa/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas
8.
Protein Sci ; 29(4): 905-918, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31833153

RESUMEN

Pseudomonas aeruginosa has a high potential for developing resistance to multiple antibiotics. The gene (glnS) encoding glutaminyl-tRNA synthetase (GlnRS) from P. aeruginosa was cloned and the resulting protein characterized. GlnRS was kinetically evaluated and the KM and kcatobs , governing interactions with tRNA, were 1.0 µM and 0.15 s-1 , respectively. The crystal structure of the α2 form of P. aeruginosa GlnRS was solved to 1.9 Å resolution. The amino acid sequence and structure of P. aeruginosa GlnRS were analyzed and compared to that of GlnRS from Escherichia coli. Amino acids that interact with ATP, glutamine, and tRNA are well conserved and structure overlays indicate that both GlnRS proteins conform to a similar three-dimensional structure. GlnRS was developed into a screening platform using scintillation proximity assay technology and used to screen ~2,000 chemical compounds. Three inhibitory compounds were identified and analyzed for enzymatic inhibition as well as minimum inhibitory concentrations against clinically relevant bacterial strains. Two of the compounds, BM02E04 and BM04H03, were selected for further studies. These compounds displayed broad-spectrum antibacterial activity and exhibited moderate inhibitory activity against mutant efflux deficient strains of P. aeruginosa and E. coli. Growth of wild-type strains was unaffected, indicating that efflux was likely responsible for the lack of sensitivity. The global mode of action was determined using time-kill kinetics. BM04H03 did not inhibit the growth of human cell cultures at any concentration and BM02E04 only inhibit cultures at the highest concentration tested (400 µg/ml). In conclusion, GlnRS from P. aeruginosa is shown to have a structure similar to that of E. coli GlnRS and two natural product compounds were identified as inhibitors of P. aeruginosa GlnRS with the potential for utility as lead candidates in antibacterial drug development in a time of increased antibiotic resistance.


Asunto(s)
Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Cinética , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Pseudomonas aeruginosa/enzimología
9.
Curr Drug Discov Technol ; 17(1): 119-130, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30088448

RESUMEN

BACKGROUND: Pseudomonas aeruginosa is an opportunistic multi-drug resistance pathogen implicated as the causative agent in a high-percentage of nosocomial and community acquired bacterial infections. The gene encoding leucyl-tRNA synthetase (LeuRS) from P. aeruginosa was overexpressed in Escherichia coli and the resulting protein was characterized. METHODS: LeuRS was kinetically evaluated and the KM values for interactions with leucine, ATP and tRNA were 6.5, 330, and 3.0 µM, respectively. LeuRS was developed into a screening platform using scintillation proximity assay (SPA) technology and used to screen over 2000 synthetic and natural chemical compounds. RESULTS: The initial screen resulted in the identification of two inhibitory compounds, BT03C09 and BT03E07. IC50s against LeuRS observed for BT03C09 and BT03E07 were 23 and 15 µM, respectively. The minimum inhibitory concentrations (MIC) were determined against nine clinically relevant bacterial strains. In time-kill kinetic analysis, BT03C09 was observed to inhibit bacterial growth in a bacteriostatic manner, while BT03E07 acted as a bactericidal agent. Neither compound competed with leucine or ATP for binding LeuRS. Limited inhibition was observed in aminoacylation assays with the human mitochondrial form of LeuRS, however when tested in cultures of human cell line, BT03C09 was toxic at all concentration whereas BT03E07 only showed toxic effects at elevated concentrations. CONCLUSION: Two compounds were identified as inhibitors of LeuRS in a screen of over 2000 natural and synthetic compounds. After characterization one compound (BT03E07) exhibited broad spectrum antibacterial activity while maintaining low toxicity against human mitochondrial LeuRS as well as against human cell cultures.


Asunto(s)
Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Pseudomonas aeruginosa/efectos de los fármacos , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/aislamiento & purificación , Aminoacil-ARNt Sintetasas/metabolismo , Antibacterianos/química , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Enzimas , Ensayos Analíticos de Alto Rendimiento , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones Oportunistas/tratamiento farmacológico , Infecciones Oportunistas/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Pruebas de Toxicidad Aguda
10.
Protein Sci ; 28(4): 727-737, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30666738

RESUMEN

Pseudomonas aeruginosa is an opportunistic multi-drug resistant pathogen implicated as a causative agent in nosocomial and community acquired bacterial infections. The gene encoding prolyl-tRNA synthetase (ProRS) from P. aeruginosa was overexpressed in Escherichia coli and the resulting protein was characterized. ProRS was kinetically evaluated and the KM values for interactions with ATP, proline, and tRNA were 154, 122, and 5.5 µM, respectively. The turn-over numbers, kcatobs , for interactions with these substrates were calculated to be 5.5, 6.3, and 0.2 s-1 , respectively. The crystal structure of the α2 form of P. aeruginosa ProRS was solved to 2.60 Å resolution. The amino acid sequence and X-ray crystal structure of P. aeruginosa ProRS was analyzed and compared with homologs in which the crystal structures have been solved. The amino acids that interact with ATP and proline are well conserved in the active site region and overlay of the crystal structure with ProRS homologs conforms to a similar overall three-dimensional structure. ProRS was developed into a screening platform using scintillation proximity assay (SPA) technology and used to screen 890 chemical compounds, resulting in the identification of two inhibitory compounds, BT06A02 and BT07H05. This work confirms the utility of a screening system based on the functionality of ProRS from P. aeruginosa.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Proteínas Bacterianas/química , Pseudomonas aeruginosa/química , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Aminoacil-ARNt Sintetasas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Conformación Proteica , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/metabolismo
11.
SLAS Discov ; 23(3): 294-301, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29186665

RESUMEN

Pseudomonas aeruginosa, an opportunistic pathogen, is highly susceptible to developing resistance to multiple antibiotics. The gene encoding aspartyl-tRNA synthetase (AspRS) from P. aeruginosa was cloned and the resulting protein characterized. AspRS was kinetically evaluated, and the KM values for aspartic acid, ATP, and tRNA were 170, 495, and 0.5 µM, respectively. AspRS was developed into a screening platform using scintillation proximity assay (SPA) technology and used to screen 1690 chemical compounds, resulting in the identification of two inhibitory compounds, BT02A02 and BT02C05. The minimum inhibitory concentrations (MICs) were determined against nine clinically relevant bacterial strains, including efflux pump mutant and hypersensitive strains of P. aeruginosa. The compounds displayed broad-spectrum antibacterial activity and inhibited growth of the efflux and hypersensitive strains with MICs of 16 µg/mL. Growth of wild-type strains were unaffected, indicating that efflux was likely responsible for this lack of activity. BT02A02 did not inhibit growth of human cell cultures at any concentration. However, BT02C05 did inhibit human cell cultures with a cytotoxicity concentration (CC50) of 61.6 µg/mL. The compounds did not compete with either aspartic acid or ATP for binding AspRS, indicating that the mechanism of action of the compound occurs outside the active site of aminoacylation.


Asunto(s)
Antibacterianos/farmacología , Aspartato-ARNt Ligasa/genética , Pseudomonas aeruginosa/efectos de los fármacos , ARN de Transferencia de Asparagina/genética , ARN de Transferencia/genética , Proteínas Bacterianas/genética , Dominio Catalítico/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Citotoxinas/farmacología , Células HEK293 , Humanos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana/métodos , Pseudomonas aeruginosa/genética
12.
Egypt J Chem ; 61(Conference Iss): 9-25, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31937997

RESUMEN

AS THE RESISTANCE of Staphylococcus aureus to antibiotics represents a major threat to global health, anti-infectives with novel mechanisms must be developed. Novel compounds were generated as potential phenylalanine tRNA synthetase (PheRS) inhibitors based on the published homology model of S. aureus PheRS to aid the design process using Molecular Operating Environment (MOE) software. PheRS was selected as it is structurally unique enzyme among the aminoacyl-tRNA synthetases (aaRS), it is considerably different from human cytosolic and human mitochondrial aaRS and it is essential and conserved across bacterial species. The designed compounds were synthesized according to different clear schemes. The compounds were confirmed by 1H NMR, 13C NMR, HRMS and/or microanalysis, and they were microbiologically evaluated.

13.
SLAS Discov ; 23(1): 65-75, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28745975

RESUMEN

Pseudomonas aeruginosa histidyl-tRNA synthetase (HisRS) was selected as a target for antibiotic drug development. The HisRS protein was overexpressed in Escherichia coli and kinetically evaluated. The KM values for interaction of HisRS with its three substrates, histidine, ATP, and tRNAHis, were 37.6, 298.5, and 1.5 µM, while the turnover numbers were 8.32, 16.8, and 0.57 s-1, respectively. A robust screening assay was developed, and 800 natural products and 890 synthetic compounds were screened for inhibition of activity. Fifteen compounds with inhibitory activity were identified, and the minimum inhibitory concentration (MIC) was determined for each against a panel of nine pathogenic bacteria. Each compound exhibited broad-spectrum activity. Based on structural similarity and MIC results, four compounds, BT02C02, BT02D04, BT08E04, and BT09C11, were selected for additional analysis. These compounds inhibited the activity of HisRS with IC50 values of 4.4, 9.7, 14.1, and 11.3 µM, respectively. Time-kill studies indicated a bacteriostatic mode of inhibition for each compound. BT02D04 and BT08E04 were noncompetitive with both histidine and ATP, BT02C02 was competitive with histidine but noncompetitive with ATP, and BT09C11 was uncompetitive with histidine and noncompetitive with ATP. These compounds were not observed to be toxic to human cell cultures.


Asunto(s)
Antibacterianos/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Histidina-ARNt Ligasa/antagonistas & inhibidores , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Secuencia de Aminoácidos , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Expresión Génica , Histidina-ARNt Ligasa/genética , Histidina-ARNt Ligasa/metabolismo , Humanos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Pseudomonas aeruginosa/genética
14.
Curr Drug Discov Technol ; 14(3): 156-168, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28359232

RESUMEN

BACKGROUND: Pseudomonas aeruginosa is an opportunistic pathogen problematic in causing nosocomial infections and is highly susceptible to development of resistance to multiple antibiotics. The gene encoding methionyl-tRNA synthetase (MetRS) from P. aeruginosa was cloned and the resulting protein characterized. METHODS: MetRS was kinetically evaluated and the KM for its three substrates, methionine, ATP and tRNAMet were determined to be 35, 515, and 29 µM, respectively. P. aeruginosaMetRS was used to screen two chemical compound libraries containing 1690 individual compounds. RESULTS: A natural product compound (BM01C11) was identified that inhibited the aminoacylation function. The compound inhibited P. aeruginosa MetRS with an IC50 of 70 µM. The minimum inhibitory concentration (MIC) of BM01C11 was determined against nine clinically relevant bacterial strains, including efflux pump mutants and hypersensitive strains of P. aeruginosa and E. coli. The MIC against the hypersensitive strain of P. aeruginosa was 16 µg/ml. However, the compound was not effective against the wild-type and efflux pump mutant strains, indicating that efflux may not be responsible for the lack of activity against the wild-type strains. When tested in human cell cultures, the cytotoxicity concentration (CC50) was observed to be 30 µg/ml. The compound did not compete with methionine or ATP for binding MetRS, indicating that the mechanism of action of the compound likely occurs outside the active site of aminoacylation. CONCLUSION: An inhibitor of P. aeruginosa MetRS, BM01C11, was identified as a flavonoid compound named isopomiferin. Isopomiferin inhibited the enzymatic activity of MetRS and displayed broad spectrum antibacterial activity. These studies indicate that isopomiferin may be amenable to development as a therapeutic for bacterial infections.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Isoflavonas/farmacología , Metionina-ARNt Ligasa/antagonistas & inhibidores , Bacterias/efectos de los fármacos , Bacterias/enzimología , Bacterias/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células HEK293 , Humanos , Metionina-ARNt Ligasa/genética , Metionina-ARNt Ligasa/aislamiento & purificación , Pruebas de Sensibilidad Microbiana
15.
Nucleic Acids Res ; 45(8): 4463-4478, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28158673

RESUMEN

Polydactyl zinc finger (ZF) proteins have prominent roles in gene regulation and often execute multiple regulatory functions. To understand how these proteins perform varied regulation, we studiedDrosophila Suppressor of Hairy-wing [Su(Hw)], an exemplar multifunctional polydactyl ZF protein. We identified separation-of-function (SOF) alleles that encode proteins disrupted in a single ZF that retain one of the Su(Hw) regulatory activities. Through extended in vitro analyses of the Su(Hw) ZF domain, we show that clusters of ZFs bind individual modules within a compound DNA consensus sequence. Through in vivo analysis of SOF mutants, we find that Su(Hw) genomic sites separate into sequence subclasses comprised of combinations of modules, with subclasses enriched for different chromatin features. These data suggest a Su(Hw) code, wherein DNA binding dictates its cofactor recruitment and regulatory output. We propose that similar DNA codes might be used to confer multiple regulatory functions of other polydactyl ZF proteins.


Asunto(s)
Cromatina/química , ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Represoras/genética , Dedos de Zinc , Alelos , Animales , Secuencia de Bases , Sitios de Unión , Cromatina/efectos de los fármacos , Cromatina/metabolismo , ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/metabolismo , Metanosulfonato de Etilo/farmacología , Femenino , Regulación de la Expresión Génica , Genotipo , Masculino , Mutágenos/farmacología , Mutación , Fenotipo , Unión Proteica , Dominios Proteicos , Proteínas Represoras/metabolismo
16.
SLAS Discov ; 22(6): 775-782, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27872201

RESUMEN

Four inhibitory compounds were identified using a poly-uridylic acid (polyU) mRNA-directed aminoacylation/translation (A/T) protein synthesis system composed of phenylalanyl-tRNA synthetases (PheRS), ribosomes, and ribosomal factors from Pseudomonas aeruginosa in an in vitro screen of a synthetic compound library. The compounds were specific for inhibition of bacterial protein synthesis. In enzymatic assays, the compounds inhibited protein synthesis with IC50 values ranging from 20 to 60 µM. Minimum inhibitory concentrations (MICs) were determined in cultures for a panel of pathogenic organisms, including Enterococcus faecalis, Escherichia coli, Haemophilus influenzae, P. aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae. All the compounds were observed to have broad-spectrum activity and inhibited an efflux pump mutant strain of P. aeruginosa with MICs of 0.5-16 µg/mL. The molecular target of two compounds was determined to be PheRS. These two compounds were bacteriostatic against both Gram-positive and Gram-negative pathogens. In competition assays, they were not observed to compete with the natural substrates ATP or phenylalanine for active site binding. The other two compounds directly inhibited the ribosome and were bactericidal against both Gram-positive and Gram-negative pathogens. In cytotoxicity MTT testing in human cell lines, the compounds were shown to be from 2500- to 30,000-fold less active than the control staurosporine.


Asunto(s)
Antibacterianos/farmacología , Descubrimiento de Drogas , Biosíntesis de Proteínas/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Antibacterianos/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Descubrimiento de Drogas/métodos , Humanos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Bibliotecas de Moléculas Pequeñas
17.
Protein Sci ; 25(12): 2290-2296, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27636899

RESUMEN

Pseudomonas aeruginosa is an opportunistic bacterial pathogen and a primary cause of nosocomial infection in humans. The rate of antibiotic resistance in P. aeruginosa is increasing worldwide leading to an unmet need for discovery of new chemical compounds distinctly different from present antimicrobials. Protein synthesis is an essential metabolic process and a validated target for the development of new antibiotics. Initiation factor 1 from P. aeruginosa (Pa-IF1) is the smallest of the three initiation factors that act to establish the 30S initiation complex during initiation of protein biosynthesis. Here we report the characterization and solution NMR structure of Pa-IF1. Pa-IF1 consists of a five-stranded ß-sheet with an unusual extended ß-strand at the C-terminus and one short α-helix arranged in the sequential order ß1-ß2-ß3-α1-ß4-ß5. The structure adopts a typical ß-barrel fold and contains an oligomer-binding motif. A cluster of basic residues (K39, R41, K42, K64, R66, R70, and R72) located on the surface of strands ß4 and ß5 near the short α-helix may compose the binding interface with the 30S subunit.


Asunto(s)
Proteínas Bacterianas/química , Factor 1 Procariótico de Iniciación/química , Pseudomonas aeruginosa/química , Secuencias de Aminoácidos , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos
18.
Antimicrob Agents Chemother ; 60(8): 4820-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27246774

RESUMEN

Bacterial protein synthesis is the target for numerous natural and synthetic antibacterial agents. We have developed a poly(U) mRNA-directed aminoacylation/translation (A/T) protein synthesis system composed of phenylalanyl-tRNA synthetases (PheRS), ribosomes, and ribosomal factors from Pseudomonas aeruginosa This system has been used for high-throughput screening of a natural-compound library. Assays were developed for each component of the system to ascertain the specific target of inhibitory compounds. In high-throughput screens, 13 compounds were identified that inhibit protein synthesis with 50% inhibitory concentrations ranging from 0.3 to >80 µM. MICs were determined for the compounds against the growth of a panel of pathogenic organisms, including Enterococcus faecalis, Escherichia coli, Haemophilus influenzae, Moraxella catarrhalis, P. aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae Three of the compounds were observed to have broad-spectrum activity and inhibited a hypersensitive strain of P. aeruginosa with MICs of 8 to 16 µg/ml. The molecular target of each of the three compounds was determined to be PheRS. One compound was found to be bacteriostatic, and one compound was bactericidal against both Gram-positive and Gram-negative pathogens. The third compound was observed to be bacteriostatic against Gram-positive and bactericidal against Gram-negative bacteria. All three compounds were competitive with the substrate ATP; however, one compound was competitive, one was uncompetitive, and one noncompetitive with the amino acid substrate. Macromolecular synthesis assays confirm the compounds inhibit protein synthesis. The compounds were shown to be more than 25,000-fold less active than the control staurosporine in cytotoxicity MTT testing in human cell lines.


Asunto(s)
Antibacterianos/farmacología , Productos Biológicos/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Línea Celular , Bacterias Grampositivas/efectos de los fármacos , Células HEK293 , Humanos , Concentración 50 Inhibidora , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/metabolismo , Ribosomas/efectos de los fármacos
19.
Biomol NMR Assign ; 10(2): 249-52, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26983940

RESUMEN

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen and a primary cause of infection in humans. P. aeruginosa can acquire resistance against multiple groups of antimicrobial agents, including ß-lactams, aminoglycosides and fluoroquinolones, and multidrug resistance is increasing in this organism which makes treatment of the infections difficult and expensive. This has led to the unmet need for discovery of new compounds distinctly different from present antimicrobials. Protein synthesis is an essential metabolic process and a validated target for the development of new antibiotics. Translation initiation factor 1 from P. aeruginosa (Pa-IF1) is the smallest of the three initiation factors that acts to establish the 30S initiation complex to initiate translation during protein biosynthesis, and its structure is unknown. Here we report the (1)H, (13)C and (15)N chemical shift assignments of Pa-IF1 as the basis for NMR structure determination and interaction studies. Secondary structure analyses deduced from the NMR chemical shift data have identified five ß-strands with an unusually extended ß-strand at the C-terminal end of the protein and one short α-helix arranged in the sequential order ß1-ß2-ß3-α1-ß4-ß5. This is further supported by (15)N-{(1)H} hetero NOEs. These secondary structure elements suggest the Pa-IF1 adopts the typical ß-barrel structure and is composed of an oligomer-binding motif.


Asunto(s)
Proteínas Bacterianas/química , Resonancia Magnética Nuclear Biomolecular , Factores Procarióticos de Iniciación/química , Pseudomonas aeruginosa , Estructura Secundaria de Proteína , Pseudomonas aeruginosa/genética
20.
J Biomol Screen ; 20(9): 1160-70, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26116192

RESUMEN

Pseudomonas aeruginosa glutamyl-tRNA synthetase (GluRS) was overexpressed in Escherichia coli. Sequence analysis indicated that P. aeruginosa GluRS is a discriminating GluRS and, similar to other GluRS proteins, requires the presence of tRNA(Glu) to produce a glutamyl-AMP intermediate. Kinetic parameters for interaction with tRNA were determined and the k(cat) and KM were 0.8 s(-1) and 0.68 µM, respectively, resulting in a k(cat)/KM of 1.18 s(-1) µM(-1). A robust aminoacylation-based scintillation proximity assay (SPA) assay was developed and 800 natural products and 890 synthetic compounds were screened for inhibitory activity against P. aeruginosa GluRS. Fourteen compounds with inhibitory activity were identified. IC50s were in the low micromolar range. The minimum inhibitory concentration (MIC) was determined for each of the compounds against a panel of pathogenic bacteria. Two compounds, BT_03F04 and BT_04B09, inhibited GluRS with IC50s of 21.9 and 24.9 µM, respectively, and both exhibited promising MICs against Gram-positive bacteria. Time-kill studies indicated that one compound was bactericidal and one was bacteriostatic against Gram-positive bacteria. BT_03F04 was found to be noncompetitive with both ATP and glutamic acid, and BT_04B09 was competitive with glutamic acid but noncompetitive with ATP. The compounds were not observed to be toxic to mammalian cells in MTT assays.


Asunto(s)
Antibacterianos/química , Proteínas Bacterianas/antagonistas & inhibidores , Glutamato-ARNt Ligasa/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Antibacterianos/toxicidad , Proteínas Bacterianas/química , Evaluación Preclínica de Medicamentos , Pruebas de Enzimas , Glutamato-ARNt Ligasa/química , Ensayos Analíticos de Alto Rendimiento , Concentración 50 Inhibidora , Cinética , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Pseudomonas aeruginosa/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA