Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
JCI Insight ; 8(18)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37607000

RESUMEN

Uterine leiomyomas cause heavy menstrual bleeding, anemia, and pregnancy loss in millions of women worldwide. Driver mutations in the transcriptional mediator complex subunit 12 (MED12) gene in uterine myometrial cells initiate 70% of leiomyomas that grow in a progesterone-dependent manner. We showed a distinct chromatin occupancy landscape of MED12 in mutant MED12 (mut-MED12) versus WT-MED12 leiomyomas. Integration of cistromic and transcriptomics data identified tryptophan 2,3-dioxygenase (TDO2) as the top mut-MED12 target gene that was significantly upregulated in mut-MED12 leiomyomas when compared with adjacent myometrium and WT-MED12 leiomyomas. TDO2 catalyzes the conversion of tryptophan to kynurenine, an aryl hydrocarbon receptor (AHR) ligand that we confirmed to be significantly elevated in mut-MED12 leiomyomas. Treatment of primary mut-MED12 leiomyoma cells with tryptophan or kynurenine stimulated AHR nuclear translocation, increased proliferation, inhibited apoptosis, and induced AHR-target gene expression, whereas blocking the TDO2/kynurenine/AHR pathway by siRNA or pharmacological treatment abolished these effects. Progesterone receptors regulated the expression of AHR and its target genes. In vivo, TDO2 expression positively correlated with the expression of genes crucial for leiomyoma growth. In summary, activation of the TDO2/kynurenine/AHR pathway selectively in mut-MED12 leiomyomas promoted tumor growth and may inform the future development of targeted treatments and precision medicine.


Asunto(s)
Leiomioma , Neoplasias Uterinas , Femenino , Humanos , Triptófano , Quinurenina/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología , Triptófano Oxigenasa/genética , Triptófano Oxigenasa/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Leiomioma/genética , Leiomioma/metabolismo , Leiomioma/patología , Mutación , Complejo Mediador/genética , Complejo Mediador/metabolismo
2.
Nat Commun ; 14(1): 4057, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429859

RESUMEN

Nearly 70% of Uterine fibroid (UF) tumors are driven by recurrent MED12 hotspot mutations. Unfortunately, no cellular models could be generated because the mutant cells have lower fitness in 2D culture conditions. To address this, we employ CRISPR to precisely engineer MED12 Gly44 mutations in UF-relevant myometrial smooth muscle cells. The engineered mutant cells recapitulate several UF-like cellular, transcriptional, and metabolic alterations, including altered Tryptophan/kynurenine metabolism. The aberrant gene expression program in the mutant cells is, in part, driven by a substantial 3D genome compartmentalization switch. At the cellular level, the mutant cells gain enhanced proliferation rates in 3D spheres and form larger lesions in vivo with elevated production of collagen and extracellular matrix deposition. These findings indicate that the engineered cellular model faithfully models key features of UF tumors and provides a platform for the broader scientific community to characterize genomics of recurrent MED12 mutations.


Asunto(s)
Leiomioma , Humanos , Leiomioma/genética , Miocitos del Músculo Liso , Mutación , Genómica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Factores de Transcripción , Complejo Mediador/genética
3.
Fertil Steril ; 119(5): 746-750, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36925057

RESUMEN

Endometriosis and adenomyosis are closely related disorders. Their pathophysiologies are extremely similar. Both tissues originate from the eutopically located intracavitary endometrium. Oligoclones of endometrial glandular epithelial cells with somatic mutations and attached stromal cells may give rise to endometriosis if they travel to peritoneal surfaces or the ovary via retrograde menstruation and/or may be entrapped in the myometrium to give rise to adenomyosis. In both instances, the endometrial cell populations possess survival and growth capabilities conferred by somatic epithelial mutations and epigenetic abnormalities in stromal cells. Activating mutations of KRAS are the most commonly found genetic variant in endometriotic epithelial cells, whereas the adenomyotic epithelial cells almost exclusively bear KRAS mutations. Epigenetic abnormalities in the stromal cells of endometriosis and adenomyosis are very similar and involve an abnormal expression pattern of nuclear receptors, including the steroid receptors. These epigenetic defects give rise to excessive local estrogen biosynthesis by aromatase and abnormal estrogen action via estrogen receptor-ß. Deficient progesterone receptor expression results in progesterone resistance in both endometriosis and adenomyosis.


Asunto(s)
Adenomiosis , Endometriosis , Enfermedades Uterinas , Femenino , Humanos , Endometriosis/metabolismo , Adenomiosis/genética , Adenomiosis/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Enfermedades Uterinas/metabolismo , Endometrio/metabolismo , Estrógenos
4.
Fertil Steril ; 119(5): 869-882, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36736810

RESUMEN

OBJECTIVE: To assess the cellular and molecular landscape of adenomyosis. DESIGN: Single-cell analysis of genome-wide messenger RNA (mRNA) expression (single-cell RNA sequencing) of matched tissues of endometrium, adenomyosis, and myometrium using relatively large numbers of viable cells. SETTING: Not applicable. PATIENT(S): Patients (n = 3, age range 40-44 years) undergoing hysterectomy for diffuse adenomyosis. MAIN OUTCOME MEASURE(S): Definition of the molecular landscape of matched adenomyotic, endometrial and myometrial tissues from the same uterus using single-cell RNA sequencing and comparison of distinct cell types in these tissues to identify disease-specific cell populations, abnormal gene expression and pathway activation, and mesenchymal-epithelial interactions. RESULT(S): The largest cell population in the endometrium was composed of closely clustered fibroblast groups, which comprise 36% of all cells and seem to originate from pericyte progenitors differentiating to estrogen/progesterone receptor-expressing endometrial stromal- cells. In contrast, the entire fibroblast population in adenomyosis comprised a larger (50%) portion of all cells and was not linked to any pericyte progenitors. Adenomyotic fibroblasts eventually differentiate into extracellular matrix protein-expressing fibroblasts and smooth muscle cells. Hierarchical clustering of mRNA expression revealed a unique adenomyotic fibroblast population that clustered transcriptomically with endometrial fibroblasts, suggestive of an endometrial stromal cell population serving as progenitors of adenomyosis. Four other adenomyotic fibroblast clusters with disease-specific transcriptomes were distinct from those of endometrial or myometrial fibroblasts. The mRNA levels of the natural WNT inhibitors, named, secreted frizzled-related proteins 1, 2, and 4, were higher in these 4 adenomyotic fibroblast clusters than in endometrial fibroblast clusters. Moreover, we found that multiple WNTs, which originate from fibroblasts and target ciliated and unciliated epithelial cells and endothelial cells, constitute a critical paracrine signaling network in adenomyotic tissue. Compared with endometrial tissue, unciliated and ciliated epithelial cells in adenomyosis comprised a significantly smaller portion of this tissue and exhibited molecular evidence of progesterone resistance and diminished regulation of estrogen signaling. CONCLUSION(S): We found a high degree of heterogeneity in fibroblast-like cells in the adenomyotic uterus. The WNT signaling involving differential expression of secreted frizzled-related proteins, which act as decoy receptors for WNTs, in adenomyotic fibroblasts may have a key role in the pathophysiology of this disease.


Asunto(s)
Adenomiosis , Endometriosis , Femenino , Humanos , Adulto , Adenomiosis/genética , Adenomiosis/metabolismo , Vía de Señalización Wnt/genética , Células Endoteliales , Transcriptoma , Endometrio/metabolismo , Estrógenos , ARN Mensajero/genética , Endometriosis/metabolismo
5.
Res Sq ; 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36798375

RESUMEN

Uterine fibroid (UF) tumors originate from a mutated smooth muscle cell (SMC). Nearly 70% of these tumors are driven by hotspot recurrent somatic mutations in the MED12 gene; however, there are no tractable genetic models to study the biology of UF tumors because, under culture conditions, the non-mutant fibroblasts outgrow the mutant SMC cells, resulting in the conversion of the population to WT phenotype. The lack of faithful cellular models hampered our ability to delineate the molecular pathways downstream of MED12 mutations and identify therapeutics that may selectively target the mutant cells. To overcome this challenge, we employed CRISPR knock-in with a sensitive PCR-based screening strategy to precisely engineer cells with mutant MED12 Gly44, which constitutes 50% of MED12 exon two mutations. Critically, the engineered myometrial SMC cells recapitulate several UF-like cellular, transcriptional and metabolic alterations, including enhanced proliferation rates in 3D spheres and altered Tryptophan/kynurenine metabolism. Our transcriptomic analysis supported by DNA synthesis tracking reveals that MED12 mutant cells, like UF tumors, have heightened expression of DNA repair genes but reduced DNA synthesis rates. Consequently, these cells accumulate significantly higher rates of DNA damage and are selectively more sensitive to common DNA-damaging chemotherapy, indicating mutation-specific and therapeutically relevant vulnerabilities. Our high-resolution 3D chromatin interaction analysis demonstrates that the engineered MED12 mutations drive aberrant genomic activity due to a genome-wide chromatin compartmentalization switch. These findings indicate that the engineered cellular model faithfully models key features of UF tumors and provides a novel platform for the broader scientific community to characterize genomics of recurrent MED12 mutations and discover potential therapeutic targets.

6.
Reprod Sci ; 30(2): 544-559, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35732928

RESUMEN

The alterations in myometrial biology during labor are not well understood. The myometrium is the contractile portion of the uterus and contributes to labor, a process that may be regulated by the steroid hormone progesterone. Thus, human myometrial tissues from term pregnant in-active-labor (TIL) and term pregnant not-in-labor (TNIL) subjects were used for genome-wide analyses to elucidate potential future preventive or therapeutic targets involved in the regulation of labor. Using myometrial tissues directly subjected to RNA sequencing (RNA-seq), progesterone receptor (PGR) chromatin immunoprecipitation sequencing (ChIP-seq), and histone modification ChIP-seq, we profiled genome-wide changes associated with gene expression in myometrial smooth muscle tissue in vivo. In TIL myometrium, PGR predominantly occupied promoter regions, including the classical progesterone response element, whereas it bound mainly to intergenic regions in TNIL myometrial tissue. Differential binding analysis uncovered over 1700 differential PGR-bound sites between TIL and TNIL, with 1361 sites gained and 428 lost in labor. Functional analysis identified multiple pathways involved in cAMP-mediated signaling enriched in labor. A three-way integration of the data for ChIP-seq, RNA-seq, and active histone marks uncovered the following genes associated with PGR binding, transcriptional activation, and altered mRNA levels: ATP11A, CBX7, and TNS1. In vitro studies showed that ATP11A, CBX7, and TNS1 are progesterone responsive. We speculate that these genes may contribute to the contractile phenotype of the myometrium during various stages of labor. In conclusion, we provide novel labor-associated genome-wide events and PGR-target genes that can serve as targets for future mechanistic studies.


Asunto(s)
Trabajo de Parto , Progesterona , Embarazo , Femenino , Humanos , Progesterona/metabolismo , Miometrio/metabolismo , Estudio de Asociación del Genoma Completo , Trabajo de Parto/genética , Trabajo de Parto/metabolismo , Unión Proteica , Complejo Represivo Polycomb 1/metabolismo
7.
Hum Pathol ; 134: 85-91, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36549601

RESUMEN

Uterine leiomyosarcoma (LMS) is a deadly disease with high rates of recurrence and a poor prognosis. Its tumorigenesis remains largely unknown, and no specific biomarkers can be used for the differential diagnosis of LMS from other mimics. Recent whole-genome studies revealed a loss of dystrophin is common in LMS, especially in uterine LMS. To investigate the expression pattern of dystrophin expression across different types of uterine smooth muscle tumors, immunohistochemistry was performed, including usual-type leiomyoma, fumarate hydratase-deficient leiomyoma, leiomyoma with bizarre nuclei, conventional LMS, and normal myometrium for this study. To further evaluate the genomic change in dystrophin gene region, whole-genome sequencing in 10 LMS cases were analyzed. Dystrophin expression was detected in 94% (45/48) of myometrium, 97% (34/35) of usual-type leiomyoma, 84% (26/31) of fumarate hydratase-deficient leiomyoma, 60% (12/20) of leiomyoma with bizarre nuclei, and 18% (6/34) of LMS. Loss of dystrophin expression was significantly different between benign and malignant tumors (LMS cases counted as malignant only) (p < 0.01). Of note, copy number loss in the dystrophin genomic region was found in all 10 cases of LMS. Additionally, patients with dystrophin-positive LMS tend to have a better overall survival than patients with dystrophin-negative LMS.


Asunto(s)
Distrofina , Leiomioma , Leiomiosarcoma , Neoplasias Uterinas , Femenino , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Distrofina/genética , Fumarato Hidratasa/genética , Leiomioma/patología , Leiomiosarcoma/genética , Leiomiosarcoma/diagnóstico , Neoplasias Uterinas/diagnóstico
8.
Proc Natl Acad Sci U S A ; 119(47): e2208886119, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36375056

RESUMEN

Uterine leiomyoma is the most common tumor in women and causes severe morbidity in 15 to 30% of reproductive-age women. Epidemiological studies consistently indicate a correlation between leiomyoma development and exposure to endocrine-disrupting chemical phthalates, especially di-(2-ethylhexyl) phthalate (DEHP); however, the underlying mechanisms are unknown. Here, among the most commonly encountered phthalate metabolites, we found the strongest association between the urine levels of mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), the principal DEHP metabolite, and the risk of uterine leiomyoma diagnosis (n = 712 patients). The treatment of primary leiomyoma and smooth muscle cells (n = 29) with various mixtures of phthalate metabolites, at concentrations equivalent to those detected in urine samples, significantly increased cell viability and decreased apoptosis. MEHHP had the strongest effects on both cell viability and apoptosis. MEHHP increased cellular tryptophan and kynurenine levels strikingly and induced the expression of the tryptophan transporters SLC7A5 and SLC7A8, as well as, tryptophan 2,3-dioxygenase (TDO2), the key enzyme catalyzing the conversion of tryptophan to kynurenine that is the endogenous ligand of aryl hydrocarbon receptor (AHR). MEHHP stimulated nuclear localization of AHR and up-regulated the expression of CYP1A1 and CYP1B1, two prototype targets of AHR. siRNA knockdown or pharmacological inhibition of SLC7A5/SLC7A8, TDO2, or AHR abolished MEHHP-mediated effects on leiomyoma cell survival. These findings indicate that MEHHP promotes leiomyoma cell survival by activating the tryptophan-kynurenine-AHR pathway. This study pinpoints MEHHP exposure as a high-risk factor for leiomyoma growth, uncovers a mechanism by which exposure to environmental phthalate impacts leiomyoma pathogenesis, and may lead to the development of novel druggable targets.


Asunto(s)
Dietilhexil Ftalato , Contaminantes Ambientales , Leiomioma , Ácidos Ftálicos , Humanos , Femenino , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/orina , Quinurenina , Triptófano , Supervivencia Celular , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Transportador de Aminoácidos Neutros Grandes 1 , Exposición a Riesgos Ambientales/efectos adversos , Leiomioma/inducido químicamente , Leiomioma/orina
10.
Hum Reprod ; 37(10): 2334-2349, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36001050

RESUMEN

STUDY QUESTION: What are the cellular composition and single-cell transcriptomic differences between myometrium and leiomyomas as defined by single-cell RNA sequencing? SUMMARY ANSWER: We discovered cellular heterogeneity in smooth muscle cells (SMCs), fibroblast and endothelial cell populations in both myometrium and leiomyoma tissues. WHAT IS KNOWN ALREADY: Previous studies have shown the presence of SMCs, fibroblasts, endothelial cells and immune cells in myometrium and leiomyomas. However, there is no information on the cellular heterogeneity in these tissues and the transcriptomic differences at the single-cell level between these tissues. STUDY DESIGN, SIZE, DURATION: We collected five leiomyoma and five myometrium samples from a total of eight patients undergoing hysterectomy. We then performed single-cell RNA sequencing to generate a cell atlas for both tissues. We utilized our single-cell sequencing data to define cell types, compare cell types by tissue type (leiomyoma versus myometrium) and determine the transcriptional changes at a single-cell resolution between leiomyomas and myometrium. Additionally, we performed MED12-variant analysis at the single-cell level to determine the genotype heterogeneity within leiomyomas. PARTICIPANTS/MATERIALS, SETTING, METHODS: We collected five MED12-variant positive leiomyomas and five myometrium samples from a total of eight patients. We then performed single-cell RNA sequencing on freshly isolated single-cell preparations. Histopathological assessment confirmed the identity of the samples. Sanger sequencing was performed to confirm the presence of the MED12 variant in leiomyomas. MAIN RESULTS AND ROLE OF CHANCE: Our data revealed previously unknown heterogeneity in the SMC, fibroblast cell and endothelial cell populations of myometrium and leiomyomas. We discovered the presence of two different lymphatic endothelial cell populations specific to uterine leiomyomas. We showed that both myometrium and MED12-variant leiomyomas are relatively similar in cellular composition but differ in cellular transcriptomic profiles. We found that fibroblasts influence the leiomyoma microenvironment through their interactions with endothelial cells, immune cells and SMCs. Variant analysis at the single-cell level revealed the presence of both MED12 variants as well as the wild-type MED12 allele in SMCs of leiomyomatous tissue. These results indicate genotype heterogeneity of cellular composition within leiomyomas. LARGE SCALE DATA: The datasets are available in the NCBI Gene Expression Omnibus (GEO) using GSE162122. LIMITATIONS, REASONS FOR CAUTION: Our study focused on MED12-variant positive leiomyomas for single-cell RNA sequencing analyses. Leiomyomas carrying other genetic rearrangements may differ in their cellular composition and transcriptomic profiles. WIDER IMPLICATIONS FOR THE FINDINGS: Our study provides a cellular atlas for myometrium and MED12-variant positive leiomyomas as defined by single-cell RNA sequencing. Our analysis provides significant insight into the differences between myometrium and leiomyomas at the single-cell level and reveals hitherto unknown genetic heterogeneity in multiple cell types within human leiomyomas. Our results will be important for future studies into the origin and growth of human leiomyomas. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by funding from the National Institute of Child Health and Human Development (HD098580 and HD088629). The authors declare no competing interests.


Asunto(s)
Leiomioma , Neoplasias Uterinas , Células Endoteliales/metabolismo , Femenino , Humanos , Leiomioma/diagnóstico , Leiomioma/patología , Mutación , Miometrio/metabolismo , Análisis de la Célula Individual , Microambiente Tumoral , Neoplasias Uterinas/diagnóstico , Neoplasias Uterinas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA