Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
bioRxiv ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39026836

RESUMEN

Prime editing has emerged as a precise and powerful genome editing tool, offering a favorable gene editing profile compared to other Cas9-based approaches. Here we report new nCas9-DNA polymerase fusion proteins to create chimeric oligonucleotide-directed editing (CODE) systems for search-and-replace genome editing. Through successive rounds of engineering, we developed CODEMax and CODEMax(exo+) editors that achieve efficient genome modifications in human cells with low unintended edits. CODEMax and CODEMax(exo+) contain an engineered Bst DNA polymerase derivative known for its robust strand displacement ability. Additionally, CODEMax(exo+) features a 5' to 3' exonuclease activity that promotes effective strand invasion and repair outcomes favoring the incorporation of the desired edit. We demonstrate CODEs can perform small insertions, deletions, and substitutions with improved efficiency compared to PEMax at many loci. Overall, CODEs complement existing prime editors to expand the toolbox for genome manipulations without double-stranded breaks.

2.
bioRxiv ; 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38260277

RESUMEN

Asymmetric vertebrate heart development is driven by an intricate sequence of morphogenetic cell movements, the coordination of which requires precise interpretation of signaling cues by heart primordia. Here we show that Nodal functions cooperatively with FGF during heart tube formation and asymmetric placement. Both pathways act as migratory stimuli for cardiac progenitor cells (CPCs), but FGF is dispensable for directing heart tube asymmetry, which is governed by Nodal. We further find that Nodal controls CPC migration by inducing left-right asymmetries in the formation of actin-based protrusions in CPCs. Additionally, we define a developmental window in which FGF signals are required for proper heart looping and show cooperativity between FGF and Nodal in this process. We present evidence FGF may promote heart looping through addition of the secondary heart field. Finally, we demonstrate that loss of FGF signaling affects proper development of the atrioventricular canal (AVC), which likely contributes to abnormal chamber morphologies in FGF-deficient hearts. Together, our data shed insight into how the spatiotemporal dynamics of signaling cues regulate the cellular behaviors underlying organ morphogenesis.

3.
Qual Life Res ; 32(7): 2059-2067, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37039911

RESUMEN

PURPOSE: The primary goal of this analysis is to describe the health-related quality of life (HRQoL), medical history, and medication use among adolescents and adults individuals with Angelman syndrome (AS). METHODS: The analysis uses baseline data collected during the STARS study, a double-blind placebo controlled trial of gaboxadol (OV101) in adolescents and adults with AS. The HRQoL was estimated using EuroQoL 5-Dimension 5-Level (EQ-5D) health questionnaire proxy 1 version, which was completed by the caregivers. EQ-5D consists of two parts, a 5-dimension descriptive and a visual analogue scale (VAS) component. The utility score derived from EQ-5D ranges from 0 to 1 (perfect health) and VAS ranges from 0 to 100 (perfect health). RESULTS: 87 individuals with AS were included in the present analysis. The mean utility score was 0.44 ± 0.20 and VAS score was 84 ± 1.5. The EQ-5D data indicated that the self-care, mobility and daily activities were most impacted. All adolescents (100%) and most adults (93%) had at least moderate problems with self-care activities, such as washing or dressing themselves. More than half (55%) of the adolescents and adults had at least moderate issues with mobility and usual activities. Approximately, 30% of adolescents and adults had moderate to extreme problems with anxiety/depression. High baseline concomitant use of medications was observed across both age groups with an average of 5 medications being used per person. CONCLUSION: This study highlights the impact of AS on HRQoL and medication utilization among adolescents and adults individuals with AS.


Asunto(s)
Síndrome de Angelman , Calidad de Vida , Adulto , Adolescente , Humanos , Calidad de Vida/psicología , Encuestas y Cuestionarios , Depresión , Cuidadores , Estado de Salud
4.
Dev Cell ; 57(21): 2445-2446, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36347237

RESUMEN

Asymmetric expression of the transcription factor Pitx2 is important for correct asymmetry in organs during development. In a recent issue of Science, Sanketi et al. find Pitx2 expression directing gut tilting is independent of Nodal and acts as a "brake" to counteract BMP4 signaling on the right.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal , Tipificación del Cuerpo/genética
5.
Dis Model Mech ; 15(9)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36125045

RESUMEN

Model organism (MO) research provides a basic understanding of biology and disease due to the evolutionary conservation of the molecular and cellular language of life. MOs have been used to identify and understand the function of orthologous genes, proteins, cells and tissues involved in biological processes, to develop and evaluate techniques and methods, and to perform whole-organism-based chemical screens to test drug efficacy and toxicity. However, a growing richness of datasets and the rising power of computation raise an important question: How do we maximize the value of MOs? In-depth discussions in over 50 virtual presentations organized by the National Institutes of Health across more than 10 weeks yielded important suggestions for improving the rigor, validation, reproducibility and translatability of MO research. The effort clarified challenges and opportunities for developing and integrating tools and resources. Maintenance of critical existing infrastructure and the implementation of suggested improvements will play important roles in maintaining productivity and facilitating the validation of animal models of human biology and disease.


Asunto(s)
Evolución Biológica , Animales , Humanos , Filogenia , Reproducibilidad de los Resultados
6.
Nat Commun ; 12(1): 5482, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34531379

RESUMEN

Rotating cilia at the vertebrate left-right organizer (LRO) generate an asymmetric leftward flow, which is sensed by cells at the left LRO margin. Ciliary activity of the calcium channel Pkd2 is crucial for flow sensing. How this flow signal is further processed and relayed to the laterality-determining Nodal cascade in the left lateral plate mesoderm (LPM) is largely unknown. We previously showed that flow down-regulates mRNA expression of the Nodal inhibitor Dand5 in left sensory cells. De-repression of the co-expressed Nodal, complexed with the TGFß growth factor Gdf3, drives LPM Nodal cascade induction. Here, we show that post-transcriptional repression of dand5 is a central process in symmetry breaking of Xenopus, zebrafish and mouse. The RNA binding protein Bicc1 was identified as a post-transcriptional regulator of dand5 and gdf3 via their 3'-UTRs. Two distinct Bicc1 functions on dand5 mRNA were observed at pre- and post-flow stages, affecting mRNA stability or flow induced translational inhibition, respectively. To repress dand5, Bicc1 co-operates with Dicer1, placing both proteins in the process of flow sensing. Intriguingly, Bicc1 mediated translational repression of a dand5 3'-UTR mRNA reporter was responsive to pkd2, suggesting that a flow induced Pkd2 signal triggers Bicc1 mediated dand5 inhibition during symmetry breakage.


Asunto(s)
Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de Unión al ARN/genética , Ribonucleasa III/genética , Xenopus laevis/genética , Pez Cebra/genética , Regiones no Traducidas 3'/genética , Animales , Desarrollo Embrionario/genética , Ratones , Estabilidad del ARN/genética , Xenopus laevis/embriología , Pez Cebra/embriología
7.
Neurology ; 96(7): e1024-e1035, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33443117

RESUMEN

OBJECTIVE: To evaluate safety and tolerability and exploratory efficacy end points for gaboxadol (OV101) compared with placebo in individuals with Angelman syndrome (AS). METHODS: Gaboxadol is a highly selective orthosteric agonist that activates δ-subunit-containing extrasynaptic γ-aminobutyric acid type A (GABAA) receptors. In a multicenter, double-blind, placebo-controlled, parallel-group trial, adolescent and adult individuals with a molecular diagnosis of AS were randomized (1:1:1) to 1 of 3 dosing regimens for a duration of 12 weeks: placebo morning dose and gaboxadol 15 mg evening dose (qd), gaboxadol 10 mg morning dose and 15 mg evening dose (bid), or placebo morning and evening dose. Safety and tolerability were monitored throughout the study. Prespecified exploratory efficacy end points included adapted Clinical Global Impression-Severity and Clinical Global Impression-Improvement (CGI-I) scales, which documented the clinical severity at baseline and change after treatment, respectively. RESULTS: Eighty-eight individuals were randomized. Of 87 individuals (aged 13-45 years) who received at least 1 dose of study drug, 78 (90%) completed the study. Most adverse events (AEs) were mild to moderate, and no life-threatening AEs were reported. Efficacy of gaboxadol, as measured by CGI-I improvement in an exploratory analysis, was observed in gaboxadol qd vs placebo (p = 0.0006). CONCLUSION: After 12 weeks of treatment, gaboxadol was found to be generally well-tolerated with a favorable safety profile. The efficacy as measured by the AS-adapted CGI-I scale warrants further studies. CLINICALTRIALSGOV IDENTIFIER: NCT02996305. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that, for individuals with AS, gaboxadol is generally safe and well-tolerated.


Asunto(s)
Síndrome de Angelman/tratamiento farmacológico , Agonistas del GABA/administración & dosificación , Isoxazoles/administración & dosificación , Adolescente , Adulto , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Esquema de Medicación , Femenino , Humanos , Isoxazoles/efectos adversos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Adulto Joven
8.
Child Psychiatry Hum Dev ; 52(4): 654-668, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32880036

RESUMEN

Angelman syndrome (AS) is a complex, heterogeneous, and life-long neurodevelopmental disorder. Despite the considerable impact on individuals and caregivers, no disease-modifying treatments are available. To support holistic clinical management and the development of AS-specific outcome measures for clinical studies, we conducted primary and secondary research identifying the impact of symptoms on individuals with AS and their unmet need. This qualitative research adopted a rigorous step-wise approach, aggregating information from published literature, then evaluating it via disease concept elicitation interviews with clinical experts and caregivers. We found that the AS-defining concepts most relevant for treatment included: impaired expressive communication, seizures, maladaptive behavior, cognitive impairment, motor function difficulties, sleep disturbance, and limited self-care abilities. We highlight the relevance of age in experiencing these key AS concepts, and the difference between the perceptions of clinicians and caregivers towards the syndrome. Finally, we outline the impact of AS on individuals, caregivers, and families.


Asunto(s)
Síndrome de Angelman , Cuidadores , Humanos , Modelos Teóricos , Atención Dirigida al Paciente , Investigación Cualitativa
9.
Birth Defects Res ; 112(10): 749-765, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32506834

RESUMEN

The RAS signaling pathway regulates cell growth, survival, and differentiation, and its inappropriate activation is associated with disease in humans. The RASopathies, a set of developmental syndromes, arise when the pathway is overactive during development. Patients share a core set of symptoms, including congenital heart disease, craniofacial anomalies, and neurocognitive delay. Due to the conserved nature of the pathway, animal models are highly informative for understanding disease etiology, and zebrafish and Xenopus are emerging as advantageous model systems. Here we discuss these aquatic models of RASopathies, which recapitulate many of the core symptoms observed in patients. Craniofacial structures become dysmorphic upon expression of disease-associated mutations, resulting in wider heads. Heart defects manifest as delays in cardiac development and changes in heart size, and behavioral deficits are beginning to be explored. Furthermore, early convergence and extension defects cause elongation of developing embryos: this phenotype can be quantitatively assayed as a readout of mutation strength, raising interesting questions regarding the relationship between pathway activation and disease. Additionally, the observation that RAS signaling may be simultaneously hyperactive and attenuated suggests that downregulation of signaling may also contribute to etiology. We propose that models should be characterized using a standardized approach to allow easier comparison between models, and a better understanding of the interplay between mutation and disease presentation.


Asunto(s)
Anomalías Craneofaciales , Cardiopatías Congénitas , Animales , Humanos , Modelos Animales , Natación , Pez Cebra/metabolismo , Proteínas ras/metabolismo
10.
Dev Biol ; 459(2): 79-86, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31758943

RESUMEN

Building a left-right (L-R) asymmetric organ requires asymmetric information. This comes from various sources, including asymmetries in embryo-scale genetic cascades (including the left-sided Nodal cascade), organ-intrinsic mechanical forces, and cell-level chirality, but the relative influence of these sources and how they collaborate to drive asymmetric morphogenesis is not understood. During zebrafish heart development, the linear heart tube extends to the left of the midline in a process known as jogging. The jogged heart then undergoes dextral (i.e. rightward) looping to correctly position the heart chambers relative to one another. Left lateralized jogging is governed by the left-sided expression of Nodal in mesoderm tissue, while looping laterality is mainly controlled by heart-intrinsic cell-level asymmetries in the actomyosin cytoskeleton. The purpose of lateralized jogging is not known. Moreover, after jogging, the heart tube returns to an almost midline position and so it is not clear whether or how jogging may impact the dextral loop. Here, we characterize a novel loss-of-function mutant in the zebrafish Nodal homolog southpaw (spaw) that appears to be a true null. We then assess the relationship between jogging and looping laterality in embryos lacking asymmetric Spaw signals. We found that the probability of a dextral loop occurring, does not depend on asymmetric Spaw signals per se, but does depend on the laterality of jogging. Thus, we conclude that the role of leftward jogging is to spatially position the heart tube in a manner that promotes robust dextral looping. When jogging laterality is abnormal, the robustness of dextral looping decreases. This establishes a cooperation between embryo-scale Nodal-dependent L-R asymmetries and organ-intrinsic cellular chirality in the control of asymmetric heart morphogenesis and shows that the transient laterality of the early heart tube has consequences for later heart morphogenetic events.


Asunto(s)
Tipificación del Cuerpo/genética , Desarrollo Embrionario/genética , Corazón/embriología , Organogénesis/genética , Pez Cebra/embriología , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Mutación con Pérdida de Función , Masculino , Mesodermo/metabolismo , Miocardio/metabolismo , Proteína Nodal/metabolismo , Transducción de Señal/genética , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta2/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
11.
Proc Natl Acad Sci U S A ; 116(51): 25756-25763, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31796593

RESUMEN

Optogenetic approaches are transforming quantitative studies of cell-signaling systems. A recently developed photoswitchable mitogen-activated protein kinase kinase 1 (MEK1) enzyme (psMEK) short-circuits the highly conserved Extracellular Signal-Regulated Kinase (ERK)-signaling cascade at the most proximal step of effector kinase activation. However, since this optogenetic tool relies on phosphorylation-mimicking substitutions in the activation loop of MEK, its catalytic activity is predicted to be substantially lower than that of wild-type MEK that has been phosphorylated at these residues. Here, we present evidence that psMEK indeed has suboptimal functionality in vivo and propose a strategy to circumvent this limitation by harnessing gain-of-function, destabilizing mutations in MEK. Specifically, we demonstrate that combining phosphomimetic mutations with additional mutations in MEK, chosen for their activating potential, restores maximal kinase activity in vitro. We establish that this modification can be tuned by the choice of the destabilizing mutation and does not interfere with reversible activation of psMEK in vivo in both Drosophila and zebrafish. To illustrate the types of perturbations enabled by optimized psMEK, we use it to deliver pulses of ERK activation during zebrafish embryogenesis, revealing rheostat-like responses of an ERK-dependent morphogenetic event.


Asunto(s)
Sistema de Señalización de MAP Quinasas/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Optogenética/métodos , Animales , Drosophila , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación/genética , Fosforilación/genética , Pez Cebra
12.
Proc Natl Acad Sci U S A ; 115(21): 5474-5479, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29735715

RESUMEN

Mammalian sex determination is controlled by the antagonistic interactions of two genetic pathways: The SRY-SOX9-FGF9 network promotes testis determination partly by opposing proovarian pathways, while RSPO1/WNT-ß-catenin/FOXL2 signals control ovary development by inhibiting SRY-SOX9-FGF9. The molecular basis of this mutual antagonism is unclear. Here we show that ZNRF3, a WNT signaling antagonist and direct target of RSPO1-mediated inhibition, is required for sex determination in mice. XY mice lacking ZNRF3 exhibit complete or partial gonadal sex reversal, or related defects. These abnormalities are associated with ectopic WNT/ß-catenin activity and reduced Sox9 expression during fetal sex determination. Using exome sequencing of individuals with 46,XY disorders of sex development, we identified three human ZNRF3 variants in very rare cases of XY female presentation. We tested two missense variants and show that these disrupt ZNRF3 activity in both human cell lines and zebrafish embryo assays. Our data identify a testis-determining function for ZNRF3 and indicate a mechanism of direct molecular interaction between two mutually antagonistic organogenetic pathways.


Asunto(s)
Trastornos del Desarrollo Sexual/genética , Diferenciación Sexual , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/fisiología , Proteínas Wnt/antagonistas & inhibidores , beta Catenina/antagonistas & inhibidores , Adolescente , Adulto , Animales , Células Cultivadas , Trastornos del Desarrollo Sexual/patología , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Gónadas/metabolismo , Gónadas/patología , Humanos , Masculino , Ratones , Mutación Missense , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Testículo/metabolismo , Testículo/patología , Trombospondinas/genética , Trombospondinas/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Adulto Joven , Pez Cebra , beta Catenina/genética , beta Catenina/metabolismo
13.
Elife ; 62017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29140250

RESUMEN

Vertebrate embryonic patterning depends on signaling from Nodal, a TGFß superfamily member. There are three Nodal orthologs in zebrafish; southpaw directs left-right asymmetries, while squint and cyclops function earlier to pattern mesendoderm. TGFß member Vg1 is implicated in mesoderm formation but the role of the zebrafish ortholog, Growth differentiation factor 3 (Gdf3), has not been fully explored. We show that zygotic expression of gdf3 is dispensable for embryonic development, while maternally deposited gdf3 is required for mesendoderm formation and dorsal-ventral patterning. We further show that Gdf3 can affect left-right patterning at multiple stages, including proper development of regional cell morphology in Kupffer's vesicle and the establishment of southpaw expression in the lateral plate mesoderm. Collectively, our data indicate that gdf3 is critical for robust Nodal signaling at multiple stages in zebrafish embryonic development.


Asunto(s)
Tipificación del Cuerpo , Estratos Germinativos/embriología , Proteína Nodal/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales
14.
J Biol Chem ; 292(46): 18814-18820, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-29018093

RESUMEN

The MEK1 kinase directly phosphorylates ERK2, after the activation loop of MEK1 is itself phosphorylated by Raf. Studies over the past decade have revealed a large number of disease-related mutations in the MEK1 gene that lead to tumorigenesis and abnormal development. Several of these mutations result in MEK1 constitutive activity, but how they affect MEK1 regulation and function remains largely unknown. Here, we address these questions focusing on two pathogenic variants of the Phe-53 residue, which maps to the well-characterized negative regulatory region of MEK1. We found that these variants are phosphorylated by Raf faster than the wild-type enzyme, and this phosphorylation further increases their enzymatic activity. However, the maximal activities of fully phosphorylated wild-type and mutant enzymes are indistinguishable. On the basis of available structural information, we propose that the activating substitutions destabilize the inactive conformation of MEK1, resulting in its constitutive activity and making it more prone to Raf-mediated phosphorylation. Experiments in zebrafish revealed that the effects of activating variants on embryonic development reflect the joint control of the negative regulatory region and activating phosphorylation. Our results underscore the complexity of the effects of activating mutations on signaling systems, even at the level of a single protein.


Asunto(s)
MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , Mutación Puntual , Animales , Cristalografía por Rayos X , Activación Enzimática , Humanos , MAP Quinasa Quinasa 1/química , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Fosforilación , Conformación Proteica , Pez Cebra , Quinasas raf/metabolismo
16.
Trends Genet ; 33(9): 616-628, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28720483

RESUMEN

Vertebrates exhibit striking left-right (L-R) asymmetries in the structure and position of the internal organs. Symmetry is broken by motile cilia-generated asymmetric fluid flow, resulting in a signaling cascade - the Nodal-Pitx2 pathway - being robustly established within mesodermal tissue on the left side only. This pathway impinges upon various organ primordia to instruct their side-specific development. Recently, progress has been made in understanding both the breaking of embryonic L-R symmetry and how the Nodal-Pitx2 pathway controls lateralized cell differentiation, migration, and other aspects of cell behavior, as well as tissue-level mechanisms, that drive asymmetries in organ formation. Proper execution of asymmetric organogenesis is critical to health, making furthering our understanding of L-R development an important concern.


Asunto(s)
Tipificación del Cuerpo , Animales , Morfogénesis
17.
Curr Top Dev Biol ; 124: 1-40, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28335857

RESUMEN

Cardiac development is a dynamic process regulated by spatial and temporal cues that are integrated to effect molecular, cellular, and tissue-level events that form the adult heart. Disruption of these highly orchestrated events can be devastating for cardiac form and function. Aberrations in heart development result in congenital heart defects (CHDs), which affect 1 in 100 infants in the United States each year. Zebrafish have proven informative as a model organism to understand both heart development and the mechanisms associated with CHDs due to the similarities in heart morphogenesis among vertebrates, as well as their genetic tractability and amenability to live imaging. In this review, we discuss the mechanisms of zebrafish heart development and the utility of zebrafish for understanding syndromic CHDs, those cardiac abnormalities that occur in the context of multisystem disorders. We conclude with avenues of zebrafish research that will potentially inform future therapeutic approaches for the treatment of CHDs.


Asunto(s)
Modelos Animales de Enfermedad , Cardiopatías Congénitas/patología , Pez Cebra/fisiología , Animales , Corazón/embriología , Humanos , Modelos Biológicos , Síndrome
18.
Nat Genet ; 49(3): 465-469, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28166211

RESUMEN

Germline mutations in Ras pathway components are associated with a large class of human developmental abnormalities, known as RASopathies, that are characterized by a range of structural and functional phenotypes, including cardiac defects and neurocognitive delays. Although it is generally believed that RASopathies are caused by altered levels of pathway activation, the signaling changes in developing tissues remain largely unknown. We used assays with spatiotemporal resolution in Drosophila melanogaster (fruit fly) and Danio rerio (zebrafish) to quantify signaling changes caused by mutations in MAP2K1 (encoding MEK), a core component of the Ras pathway that is mutated in both RASopathies and cancers in humans. Surprisingly, we discovered that intrinsically active MEK variants can both increase and reduce the levels of pathway activation in vivo. The sign of the effect depends on cellular context, implying that some of the emerging phenotypes in RASopathies may be caused by increased, as well as attenuated, levels of Ras signaling.


Asunto(s)
Mutación de Línea Germinal/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Transducción de Señal/genética , Proteínas ras/genética , Animales , Drosophila melanogaster/genética , Cardiopatías/genética , Humanos , Neoplasias/genética , Trastornos Neurocognitivos/genética , Fenotipo , Pez Cebra/genética
19.
Proc Natl Acad Sci U S A ; 114(3): 510-515, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28049852

RESUMEN

Germ-line mutations in components of the Ras/MAPK pathway result in developmental disorders called RASopathies, affecting about 1/1,000 human births. Rapid advances in genome sequencing make it possible to identify multiple disease-related mutations, but there is currently no systematic framework for translating this information into patient-specific predictions of disease progression. As a first step toward addressing this issue, we developed a quantitative, inexpensive, and rapid framework that relies on the early zebrafish embryo to assess mutational effects on a common scale. Using this assay, we assessed 16 mutations reported in MEK1, a MAPK kinase, and provide a robust ranking of these mutations. We find that mutations found in cancer are more severe than those found in both RASopathies and cancer, which, in turn, are generally more severe than those found only in RASopathies. Moreover, this rank is conserved in other zebrafish embryonic assays and Drosophila-specific embryonic and adult assays, suggesting that our ranking reflects the intrinsic property of the mutant molecule. Furthermore, this rank is predictive of the drug dose needed to correct the defects. This assay can be readily used to test the strengths of existing and newly found mutations in MEK1 and other pathway components, providing the first step in the development of rational guidelines for patient-specific diagnostics and treatment of RASopathies.


Asunto(s)
Discapacidades del Desarrollo/genética , Proteínas ras/genética , Animales , Animales Modificados Genéticamente , Discapacidades del Desarrollo/tratamiento farmacológico , Discapacidades del Desarrollo/metabolismo , Relación Dosis-Respuesta a Droga , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Humanos , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Mutación , Fenotipo , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-27821532

RESUMEN

Left-right (L-R) asymmetry of the internal organs of vertebrates is presaged by domains of asymmetric gene expression in the lateral plate mesoderm (LPM) during somitogenesis. Ciliated L-R coordinators (LRCs) are critical for biasing the initiation of asymmetrically expressed genes, such as nodal and pitx2, to the left LPM. Other midline structures, including the notochord and floorplate, are then required to maintain these asymmetries. Here we report an unexpected role for the zebrafish EGF-CFC gene one-eyed pinhead (oep) in the midline to promote pitx2 expression in the LPM. Late zygotic oep (LZoep) mutants have strongly reduced or absent pitx2 expression in the LPM, but this expression can be rescued to strong levels by restoring oep in midline structures only. Furthermore, removing midline structures from LZoep embryos can rescue pitx2 expression in the LPM, suggesting the midline is a source of an LPM pitx2 repressor that is itself inhibited by oep Reducing lefty1 activity in LZoep embryos mimics removal of the midline, implicating lefty1 in the midline-derived repression. Together, this suggests a model where Oep in the midline functions to overcome a midline-derived repressor, involving lefty1, to allow for the expression of left side-specific genes in the LPM.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.


Asunto(s)
Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Mesodermo/embriología , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...