Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 183(22): 6573-8, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11673427

RESUMEN

The phosphorylated form of the response regulator Spo0A (Spo0A~P) is required for the initiation of sporulation in Bacillus subtilis. Phosphate is transferred to Spo0A from at least four histidine kinases (KinA, KinB, KinC, and KinD) by a phosphotransfer pathway composed of Spo0F and Spo0B. Several mutations in spo0A allow initiation of sporulation in the absence of spo0F and spo0B, but the mechanisms by which these mutations allow bypass of spo0F and spo0B are not fully understood. We measured the ability of KinA, KinB, and KinC to activate sporulation of five spo0A mutants in the absence of Spo0F and Spo0B. We also determined the effect of Spo0E, a Spo0A~P-specific phosphatase, on sporulation of strains containing the spo0A mutations. Our results indicate that several of the mutations relax the specificity of Spo0A, allowing Spo0A to obtain phosphate from a broader group of phosphodonors. In the course of these experiments, we observed medium-dependent effects on the sporulation of different mutants. This led us to identify a small molecule, acetoin, that can stimulate sporulation of some spo0A mutants.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Fosfotransferasas , Proteínas Quinasas/fisiología , Factor sigma , Factores de Transcripción/genética , Acetoína/farmacología , Bacillus subtilis/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Histidina Quinasa , Mutación , Proteínas Quinasas/metabolismo , Transducción de Señal , Esporas Bacterianas
2.
Cell ; 104(2): 269-79, 2001 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-11207367

RESUMEN

We identified a signaling pathway that prevents initiation of sporulation in Bacillus subtilis when replication initiation is impaired. We isolated mutations that allow a replication initiation mutant (dnaA) to sporulate. These mutations affect a small open reading frame, sda, that was overexpressed in replication initiation mutants and appears to be directly regulated by DnaA. Mutations in replication initiation genes inhibit the onset of sporulation by preventing activation of a transcription factor required for sporulation, Spo0A. Deletion of sda restored activation of Spo0A in replication initiation mutants. Overexpression of sda in otherwise wild-type cells inhibited activation of Spo0A and sporulation. Purified Sda inhibited a histidine kinase needed for activation of Spo0A. Our results indicate that control of sda by DnaA establishes a checkpoint that inhibits activation of Spo0A and prevents futile attempts to initiate sporulation.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/genética , Replicación del ADN/fisiología , Proteínas de Unión al ADN/genética , Sistemas de Lectura Abierta , Factores de Transcripción/genética , Secuencia de Aminoácidos , Autorradiografía , Bacillus subtilis/genética , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Secuencia de Bases , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , AdnB Helicasas , Electroforesis en Gel de Poliacrilamida , Histidina Quinasa , Datos de Secuencia Molecular , Mutación , Inhibidores de Proteínas Quinasas , Proteínas Quinasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Transducción de Señal , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , Supresión Genética , Factores de Transcripción/química , Factores de Transcripción/metabolismo
3.
Proc Natl Acad Sci U S A ; 95(26): 15223-8, 1998 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-9860950

RESUMEN

Chaperones of the Hsp70 family bind to unfolded or partially folded polypeptides to facilitate many cellular processes. ATP hydrolysis and substrate binding, the two key molecular activities of this chaperone, are modulated by the cochaperone DnaJ. By using both genetic and biochemical approaches, we provide evidence that DnaJ binds to at least two sites on the Escherichia coli Hsp70 family member DnaK: under the ATPase domain in a cleft between its two subdomains and at or near the pocket of substrate binding. The lower cleft of the ATPase domain is defined as a binding pocket for the J-domain because (i) a DnaK mutation located in this cleft (R167H) is an allele-specific suppressor of the binding defect of the DnaJ mutation, D35N and (ii) alanine substitution of two residues close to R167 in the crystal structure, N170A and T173A, significantly decrease DnaJ binding. A second binding determinant is likely to be in the substrate-binding domain because some DnaK mutations in the vicinity of the substrate-binding pocket are defective in either the affinity (G400D, G539D) or rate (D526N) of both peptide and DnaJ binding to DnaK. Binding of DnaJ may propagate conformational changes to the nearby ATPase catalytic center and substrate-binding sites as well as facilitate communication between these two domains to alter the molecular properties of Hsp70.


Asunto(s)
Proteínas de Escherichia coli , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Estructura Secundaria de Proteína , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas del Choque Térmico HSP40 , Cinética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Mutagénesis Sitio-Dirigida , Fenotipo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
4.
Proc Natl Acad Sci U S A ; 93(20): 10632-7, 1996 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-8855230

RESUMEN

Escherichia coli DnaK acts as a molecular chaperone through its ATP-regulated binding and release of polypeptide substrates. Overexpressing a C-terminal fragment (CTF) of DnaK (Gly-384 to Lys-638) containing the polypeptide substrate binding domain is lethal in wild-type E. coli. This dominant-negative phenotype may result from the nonproductive binding of CTF to cellular polypeptide targets of DnaK. Mutations affecting DnaK substrate binding were identified by selecting noncytotoxic CTF mutants followed by in vitro screening. The clustering of such mutations in the three-dimensional structure of CTF suggests the model that loops L1,2 and L4,5 form a rigid core structure critical for interactions with substrate.


Asunto(s)
Proteínas de Escherichia coli , Proteínas HSP70 de Choque Térmico/química , Chaperonas Moleculares/química , Proteínas Bacterianas/química , Genes Dominantes , Prueba de Complementación Genética , Proteínas HSP70 de Choque Térmico/genética , Modelos Moleculares , Chaperonas Moleculares/genética , Fragmentos de Péptidos/química , Mutación Puntual , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes , Relación Estructura-Actividad
5.
Science ; 272(5268): 1606-14, 1996 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-8658133

RESUMEN

DnaK and other members of the 70-kilodalton heat-shock protein (hsp70) family promote protein folding, interaction, and translocation, both constitutively and in response to stress, by binding to unfolded polypeptide segments. These proteins have two functional units: a substrate-binding portion binds the polypeptide, and an adenosine triphosphatase portion facilitates substrate exchange. The crystal structure of a peptide complex with the substrate-binding unit of DnaK has now been determined at 2.0 angstroms resolution. The structure consists of a beta-sandwich subdomain followed by alpha-helical segments. The peptide is bound to DnaK in an extended conformation through a channel defined by loops from the beta sandwich. An alpha-helical domain stabilizes the complex, but does not contact the peptide directly. This domain is rotated in the molecules of a second crystal lattice, which suggests a model of conformation-dependent substrate binding that features a latch mechanism for maintaining long lifetime complexes.


Asunto(s)
Chaperoninas/metabolismo , Proteínas de Escherichia coli , Proteínas HSP70 de Choque Térmico/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Chaperoninas/química , Cristalografía por Rayos X , Escherichia coli , Proteínas HSP70 de Choque Térmico/química , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido
6.
J Mol Biol ; 242(4): 364-77, 1994 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-7932696

RESUMEN

A temperature-sensitive mutant of DnaK, the principal Escherichia coli member of the 70 kDa heat shock protein family, has been isolated. The mutation, dnaK25, lies in the putative ATP binding pocket of DnaK. It consists of a C to T transition that changes the highly conserved proline 143 to serine. Mutant strains do not support the propagation of bacteriophage lambda or of plasmids that require DnaA for replication. They are also defective in the utilization of mannose and sorbitol. ATPase activity of the mutant protein is reduced 20-fold relative to wild-type, while autophosphorylation is unaffected. DnaK25 has a fourfold faster rate of nucleotide exchange than wild-type DnaK; nucleotide exchange by both proteins is markedly increased by GrpE. The DnaK25 ATPase is still stimulated by DnaJ and GrpE and by peptide substrates. However, the affinity of most peptides tested for stimulating the DnaK25 ATPase is reduced significantly. These results indicate that a mutation in the N-terminal nucleotide binding domain can alter substrate interactions with the C-terminal substrate binding site. Nucleotide exchange by both wild-type DnaK and DnaK25 proceeds at a much faster rate than ATP hydrolysis, and therefore cannot be the rate limiting step of ATP hydrolysis under the conditions used in these experiments. Consistent with this, peptides, which stimulate ATP hydrolysis, have no effect on nucleotide exchange. Peptides thus appear to stimulate the ATPase by acting at another step, such as increasing the rate of phosphate bond cleavage.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Proteínas de Escherichia coli , Escherichia coli/genética , Proteínas HSP70 de Choque Térmico , Proteínas de Choque Térmico/genética , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Cartilla de ADN , Escherichia coli/enzimología , Escherichia coli/aislamiento & purificación , Proteínas de Choque Térmico/metabolismo , Datos de Secuencia Molecular , Mutación , Fenotipo , Análisis de Secuencia de ADN , Temperatura
7.
J Biol Chem ; 269(24): 16643-7, 1994 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-8206983

RESUMEN

DnaK, the Hsp70 of Escherichia coli, autophosphorylates in vitro. Of the two heat shock proteins that interact with DnaK, GrpE inhibits DnaK phosphorylation, whereas DnaJ has no effect on the reaction. Three synthetic peptides are shown to inhibit DnaK phosphorylation. The potency of a given peptide correlates with its affinity for the DnaK protein. A truncated DnaK that lacks the carboxyl-terminal peptide-binding domain autophosphorylates; this reaction is resistant to the inhibitory peptides. Phosphorylation of the truncated DnaK is still inhibited by GrpE, indicating that the GrpE-binding site resides in the DnaK amino-terminal domain. Thus, DnaK phosphorylation is regulated in vitro, and possibly in vivo, by physiologically relevant substrates and cofactors.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico , Proteínas de Choque Térmico/metabolismo , Escherichia coli/genética , Genes Bacterianos , Proteínas del Choque Térmico HSP40 , Proteínas de Choque Térmico/biosíntesis , Proteínas de Choque Térmico/aislamiento & purificación , Cinética , Fosfoproteínas/aislamiento & purificación , Fosfoproteínas/metabolismo , Fosforilación , Plásmidos , Reacción en Cadena de la Polimerasa/métodos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...