Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Intervalo de año de publicación
1.
Proc Biol Sci ; 287(1939): 20202310, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33203331

RESUMEN

Sauropods, the giant long-necked dinosaurs, became the dominant group of large herbivores in terrestrial ecosystems after multiple related lineages became extinct towards the end of the Early Jurassic (190-174 Ma). The causes and precise timing of this key faunal change, as well as the origin of eusauropods (true sauropods), have remained ambiguous mainly due to the scarce dinosaurian fossil record of this time. The terrestrial sedimentary successions of the Cañadón Asfalto Basin in central Patagonia (Argentina) document this critical interval of dinosaur evolution. Here, we report a new dinosaur with a nearly complete skull that is the oldest eusauropod known to date and provide high-precision U-Pb geochronology that constrains in time the rise of eusauropods in Patagonia. We show that eusauropod dominance was established after a massive magmatic event impacting southern Gondwana (180-184 Ma) and coincided with severe perturbations to the climate and a drastic decrease in the floral diversity characterized by the rise of conifers with small scaly leaves. Floral and faunal records from other regions suggest these were global changes that impacted the terrestrial ecosystems during the Toarcian warming event and formed part of a second-order mass extinction event.


Asunto(s)
Dinosaurios , Calentamiento Global , Herbivoria , Animales , Argentina , Evolución Biológica , Clima , Ecosistema , Extinción Biológica , Fósiles , Filogenia , Cráneo
2.
Commun Biol ; 3(1): 708, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239710

RESUMEN

Many plant genera in the tropical West Pacific are survivors from the paleo-rainforests of Gondwana. For example, the oldest fossils of the Malesian and Australasian conifer Agathis (Araucariaceae) come from the early Paleocene and possibly latest Cretaceous of Patagonia, Argentina (West Gondwana). However, it is unknown whether dependent ecological guilds or lineages of associated insects and fungi persisted on Gondwanan host plants like Agathis through time and space. We report insect-feeding and fungal damage on Patagonian Agathis fossils from four latest Cretaceous to middle Eocene floras spanning ca. 18 Myr and compare it with damage on extant Agathis. Very similar damage was found on fossil and modern Agathis, including blotch mines representing the first known Cretaceous-Paleogene boundary crossing leaf-mine association, external foliage feeding, galls, possible armored scale insect (Diaspididae) covers, and a rust fungus (Pucciniales). The similar suite of damage, unique to fossil and extant Agathis, suggests persistence of ecological guilds and possibly the component communities associated with Agathis since the late Mesozoic, implying host tracking of the genus across major plate movements that led to survival at great distances. The living associations, mostly made by still-unknown culprits, point to previously unrecognized biodiversity and evolutionary history in threatened rainforest ecosystems.


Asunto(s)
Evolución Biológica , Fósiles , Tracheophyta , Animales , Argentina , Asia Sudoriental , Australia , Biodiversidad , Hongos/patogenicidad , Hongos/fisiología , Insectos/fisiología , Bosque Lluvioso , Tracheophyta/microbiología , Tracheophyta/parasitología , Tracheophyta/fisiología
3.
Science ; 364(6444)2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31171664

RESUMEN

The beech-oak family Fagaceae dominates forests from the northern temperate zone to tropical Asia and Malesia, where it reaches its southern limit. We report early Eocene infructescences of Castanopsis, a diverse and abundant fagaceous genus of Southeast Asia, and co-occurring leaves from the 52-million-year-old Laguna del Hunco flora of southern Argentina. The fossil assemblage notably includes many plant taxa that associate with Castanopsis today. The discovery reveals novel Gondwanan history in Fagaceae and the characteristic tree communities of Southeast Asian lower-montane rainforests. The living diaspora associations persisted through Cenozoic climate change and plate movements as the constituent lineages tracked post-Gondwanan mesic biomes over thousands of kilometers, underscoring their current vulnerability to rapid climate change and habitat loss.


Asunto(s)
Evolución Biológica , Fagaceae/clasificación , Fósiles , Bosque Lluvioso , Argentina , Asia , Chile , Cambio Climático , Hojas de la Planta
4.
Am J Bot ; 105(8): 1345-1368, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30074620

RESUMEN

PREMISE OF THE STUDY: The fossil record of Agathis historically has been restricted to Australasia. Recently described fossils from the Eocene of Patagonian Argentina showed a broader distribution than found previously, which is reinforced here with a new early Paleocene Agathis species from Patagonia. No previous phylogenetic analyses have included fossil Agathis species. METHODS: We describe macrofossils from Patagonia of Agathis vegetative and reproductive organs from the early Danian, as well as leaves with Agathis affinities from the latest Maastrichtian. A total evidence phylogenetic analysis is performed, including the new Danian species together with other fossil species having agathioid affinities. KEY RESULTS: Early Danian Agathis immortalis sp. nov. is the oldest definite occurrence of Agathis and one of the most complete Agathis species in the fossil record. Leafy twigs, leaves, pollen cones, pollen, ovuliferous complexes, and seeds show features that are extremely similar to the living genus. Dilwynites pollen grains, associated today with both Wollemia and Agathis and known since the Turonian, were found in situ within the pollen cones. CONCLUSIONS: Agathis was present in Patagonia ca. 2 million years after the K-Pg boundary, and the putative latest Cretaceous fossils suggest that the genus survived the K-Pg extinction. Agathis immortalis sp nov. is recovered in a stem position for the genus, while A. zamunerae (Eocene, Patagonia) is recovered as part of the crown. A Mesozoic divergence for the Araucariaceae crown group, previously challenged by molecular divergence estimates, is supported by the combined phylogenetic analyses including the fossil taxa.


Asunto(s)
Evolución Biológica , Fósiles/ultraestructura , Tracheophyta/genética , Argentina , Tracheophyta/ultraestructura
5.
Am J Bot ; 105(8): 1286-1303, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30025163

RESUMEN

PREMISE OF THE STUDY: Equisetum is the sole living representative of Sphenopsida, a clade with impressive species richness, a long fossil history dating back to the Devonian, and obscure relationships with other living pteridophytes. Based on molecular data, the crown group age of Equisetum is mid-Paleogene, although fossils with possible crown synapomorphies appear in the Triassic. The most widely circulated hypothesis states that the lineage of Equisetum derives from calamitaceans, but no comprehensive phylogenetic studies support the claim. Using a combined approach, we provide a comprehensive phylogenetic analysis of Equisetales, with special emphasis on the origin of genus Equisetum. METHODS: We performed parsimony phylogenetic analyses to address relationships of 43 equisetalean species (15 extant, 28 extinct) using a combination of morphological and molecular characters. KEY RESULTS: We recovered Equisetaceae + Neocalamites as sister to Calamitaceae + a clade of Angaran and Gondwanan horsetails, with the four groups forming a clade that is sister to Archaeocalamitaceae. The estimated age for the Equisetum crown group is mid-Mesozoic. CONCLUSIONS: Modern horsetails are not nested within calamitaceans; instead, both groups have explored independent evolutionary trajectories since the Carboniferous. Diverse fossil taxon sampling helps to shed light on the position and relationships of equisetalean lineages, of which only a tiny remnant is present within the extant flora. Understanding these relationships and early character configurations of ancient plant clades as Equisetales provide useful tests of hypotheses about overall phylogenetic relationships of euphyllophytes and foundations for future tests of molecular dates with paleontological data.


Asunto(s)
Equisetum/genética , Fósiles , Filogenia
6.
Am J Bot ; 105(6): 1067-1087, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29995329

RESUMEN

PREMISE OF THE STUDY: We describe a new araucarian species, Araucaria lefipanensis, from the Late Cretaceous flora of the Lefipán Formation, in Patagonia (Argentina) based on reproductive and vegetative remains, with a combination of characters that suggest mosaic evolution in the Araucaria lineage. METHODS: The studied fossils were found at the Cañadón del Loro locality. Specimens were separated into two leaf morphotypes, and their morphological differences were tested with MANOVA. KEY RESULTS: The new species Araucaria lefipanensis is erected based on the association of dimorphic leaves with cuticle remains and isolated cone scale complexes. The reproductive morphology is characteristic of the extant section Eutacta, whereas the vegetative organs resemble those of the sections Intermedia, Bunya, and Araucaria (the broad-leaved clade). CONCLUSIONS: The leaf dimorphism of A. lefipanensis is similar to that of extant A. bidwillii, where dimorphism is considered to be related to seasonal growth. The leaf dimorphism in A. lefipanensis is consistent with the paleoclimatic and paleoenvironmental reconstructions previously suggested for the Lefipán Formation, which is thought to have been a seasonal subtropical forest. The new species shows evidence of mosaic evolution, with cone scale complexes morphologically similar to section Eutacta and leaves similar to the sections of the broad-leaved clade, constituting a possible transitional form between these two well-defined lineages. More complete plant concepts, especially those including both reproductive and vegetative remains are necessary to understand the evolution of ancient plant lineages. This work contributes to this aim by documenting a new species that may add to the understanding of the early evolution of the sections of Araucaria.


Asunto(s)
Fósiles , Tracheophyta/anatomía & histología , Argentina , Hojas de la Planta/anatomía & histología
7.
Science ; 355(6320): 71-75, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-28059765

RESUMEN

The nightshade family Solanaceae holds exceptional economic and cultural importance. The early diversification of Solanaceae is thought to have occurred in South America during its separation from Gondwana, but the family's sparse fossil record provides few insights. We report 52.2-million-year-old lantern fruits from terminal-Gondwanan Patagonia, featuring highly inflated, five-lobed calyces, as a newly identified species of the derived, diverse New World genus Physalis (e.g., groundcherries and tomatillos). The fossils are considerably older than corresponding molecular divergence dates and demonstrate an ancient history for the inflated calyx syndrome. The derived position of these early Eocene fossils shows that Solanaceae were well diversified long before final Gondwanan breakup.


Asunto(s)
Frutas/clasificación , Physalis/clasificación , Argentina , Chile , Fósiles , Frutas/anatomía & histología , Filogenia , Filogeografía , Physalis/anatomía & histología
8.
Am J Bot ; 104(9): 1344-1369, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-29885237

RESUMEN

PREMISE OF THE STUDY: The flip-leaved podocarp Retrophyllum has a disjunct extant distribution in South American and Australasian tropical rainforests and a Gondwanic fossil record since the Eocene. Evolutionary, biogeographic, and paleoecological insights from previously described fossils are limited because they preserve little foliar variation and no reproductive structures. METHODS: We investigated new Retrophyllum material from the terminal Cretaceous Lefipán, the early Eocene Laguna del Hunco, and the early/middle Eocene Río Pichileufú floras of Patagonian Argentina. We also reviewed type material of historical Eocene fossils from southern Chile. KEY RESULTS: Cretaceous Retrophyllum superstes sp. nov. is described from a leafy twig, while Eocene R. spiralifolium sp. nov. includes several foliage forms and a peduncle with 13 pollen cones. Both species preserve extensive damage from sap-feeding insects associated with foliar transfusion tissue. The Eocene species exhibits a suite of characters linking it to both Neotropical and West Pacific Retrophyllum, along with several novel features. Retrophyllum araucoensis (Berry) comb. nov. stabilizes the nomenclature for the Chilean fossils. CONCLUSIONS: Retrophyllum is considerably older than previously thought and is a survivor of the end-Cretaceous extinction. Much of the characteristic foliar variation and pollen-cone morphology of the genus evolved by the early Eocene. The mixed biogeographic signal of R. spiralifolium supports vicariance and represents a rare Neotropical connection for terminal-Gondwanan Patagonia, which is predominantly linked to extant Australasian floras due to South American extinctions. The leaf morphology of the fossils suggests significant drought vulnerability as in living Retrophyllum, indicating humid paleoenvironments.


Asunto(s)
Fósiles/anatomía & histología , Hojas de la Planta/anatomía & histología , Tracheophyta/anatomía & histología , Argentina , Herbivoria
11.
PLoS One ; 9(8): e104749, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25148081

RESUMEN

In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla) and a monocot (Araceae). Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae). Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form) and the eudicot angiosperm Nelumbo (Nelumbonaceae) are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae), ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America.


Asunto(s)
Organismos Acuáticos , Ecosistema , Plantas , Organismos Acuáticos/clasificación , Argentina , Geografía , Magnoliopsida/clasificación , Magnoliopsida/ultraestructura , Plantas/clasificación , Dinámica Poblacional
12.
Am J Bot ; 101(1): 156-79, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24418576

RESUMEN

PREMISE OF THE STUDY: Agathis is an iconic genus of large, ecologically important, and economically valuable conifers that range over lowland to upper montane rainforests from New Zealand to Sumatra. Exploitation of its timber and copal has greatly reduced the genus's numbers. The early fossil record of Agathis comes entirely from Australia, often presumed to be its area of origin. Agathis has no previous record from South America. METHODS: We describe abundant macrofossils of Agathis vegetative and reproductive organs, from early and middle Eocene rainforest paleofloras of Patagonia, Argentina. The leaves were formerly assigned to the New World cycad genus Zamia. KEY RESULTS: Agathis zamunerae sp. nov. is the first South American occurrence and the most complete representation of Agathis in the fossil record. Its morphological features are fully consistent with the living genus. The most similar living species is A. lenticula, endemic to lower montane rainforests of northern Borneo. CONCLUSIONS: Agathis zamunerae sp. nov. demonstrates the presence of modern-aspect Agathis by 52.2 mya and vastly increases the early range and possible areas of origin of the genus. The revision from Zamia breaks another link between the Eocene and living floras of South America. Agathis was a dominant, keystone element of the Patagonian Eocene floras, alongside numerous other plant taxa that still associate with it in Australasia and Southeast Asia. Agathis extinction in South America was an integral part of the transformation of Patagonian biomes over millions of years, but the living species are disappearing from their ranges at a far greater rate.


Asunto(s)
Tracheophyta/anatomía & histología , Argentina , Hojas de la Planta/anatomía & histología , Polen/anatomía & histología , Semillas/anatomía & histología , Factores de Tiempo
13.
Am J Bot ; 100(9): 1831-48, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24018858

RESUMEN

PREMISE OF THE STUDY: The early Eocene Laguna del Hunco caldera-lake paleoflora (ca. 52 Ma) from Chubut Province, Argentina, is notably diverse and includes many conifer and angiosperm lineages that are extinct in South America but extant in Australasian rainforests. No ferns have been previously described from Laguna del Hunco. We describe and interpret a new species of fossil Osmundaceae based on fertile and sterile pinnae. • METHODS: The fossil specimens were compared with other extant and fossil Osmundaceae based on living and herbarium material and published descriptions. A morphological matrix based on 29 characters was constructed for 17 living species in Osmundaceae, four species assigned to the fossil genus Todites, and the new fossil species. Phylogenetic analyses were conducted under parsimony using morphology and total evidence matrices. • KEY RESULTS: Both the new fossil and the Todites species were consistently resolved within the leptopteroid clade of Osmundaceae, and the new species resolved in a clade with the two living Todea species, which are now restricted to Australia, New Guinea, New Zealand, and southern Africa. • CONCLUSIONS: Todea amissa sp. nov. is the first record of Todea, living or fossil, in South America and only the second fossil record worldwide. The distribution of extant Todea on Gondwanan continents other than South America is broadly shared with other taxa from Laguna del Hunco, further indicating that a large component of this flora represents a Gondwanic biome that is no longer found on the South American continent.


Asunto(s)
Tracheophyta/clasificación , Fósiles , Paleontología , Filogenia , Filogeografía , Hojas de la Planta/anatomía & histología , Hojas de la Planta/clasificación , Hojas de la Planta/genética , América del Sur , Tracheophyta/anatomía & histología , Tracheophyta/genética
14.
Am J Bot ; 99(6): 1058-68, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22665438

RESUMEN

PREMISE OF THE STUDY: Seed cone morphology and anatomy reflect some of the most important changes in the phylogeny and evolutionary biology of conifers. Reexamination of the enigmatic Jurassic seed cone Pararaucaria patagonica reveals previously unknown systematically informative characters that demonstrate affinities with the Cheirolepidiaceae. This paper documents, for the first time, internal anatomy for seed cones of this important extinct Mesozoic conifer family, which may represent the ghost lineage leading to modern Pinaceae. METHODS: Morphology and anatomy of cones from the Jurassic La Matilde Formation in Patagonia are described from a combination of polished wafers and thin section preparations. New photographic techniques are employed to reveal histological details of thin sections in which organic cell wall remains are not preserved. Specific terminology for conifer seed cones is proposed to help clarify hypotheses of homology for the various structures of the cones. KEY RESULTS: Specimens are demonstrated to have trilobed ovuliferous scale tips along with a seed enclosing pocket of ovuliferous scale tissue. Originally thought to represent a seed wing in P. patagonica, this pocket-forming tissue is comparable to the flap of tissue covering seeds of compressed cheirolepidiaceous cones and is probably the most diagnostic character for seed cones of the family. CONCLUSIONS: Pararaucaria patagonica is assigned to Cheirolepidiaceae, documenting anatomical features for seed cones of the family and providing evidence for the antiquity of pinoid conifers leading to the origin of Pinaceae. A list of key morphological and anatomical characters for seed cones of Cheirolepidiaceae is developed to facilitate assignment of a much broader range of fossil remains to the family. This confirms the presence of Cheirolepidiaceae in the Jurassic of the Southern Hemisphere, which was previously suspected from palynological records.


Asunto(s)
Fósiles , Semillas/anatomía & histología , Tracheophyta/anatomía & histología , Argentina , Chile , Modelos Anatómicos , Factores de Tiempo , Tracheophyta/clasificación
15.
PLoS One ; 6(6): e21084, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21738605

RESUMEN

The evolutionary history of Eucalyptus and the eucalypts, the larger clade of seven genera including Eucalyptus that today have a natural distribution almost exclusively in Australasia, is poorly documented from the fossil record. Little physical evidence exists bearing on the ancient geographical distributions or morphologies of plants within the clade. Herein, we introduce fossil material of Eucalyptus from the early Eocene (ca. 51.9 Ma) Laguna del Hunco paleoflora of Chubut Province, Argentina; specimens include multiple leaves, infructescences, and dispersed capsules, several flower buds, and a single flower. Morphological similarities that relate the fossils to extant eucalypts include leaf shape, venation, and epidermal oil glands; infructescence structure; valvate capsulate fruits; and operculate flower buds. The presence of a staminophore scar on the fruits links them to Eucalyptus, and the presence of a transverse scar on the flower buds indicates a relationship to Eucalyptus subgenus Symphyomyrtus. Phylogenetic analyses of morphological data alone and combined with aligned sequence data from a prior study including 16 extant eucalypts, one outgroup, and a terminal representing the fossils indicate that the fossils are nested within Eucalyptus. These are the only illustrated Eucalyptus fossils that are definitively Eocene in age, and the only conclusively identified extant or fossil eucalypts naturally occurring outside of Australasia and adjacent Mindanao. Thus, these fossils indicate that the evolution of the eucalypt group is not constrained to a single region. Moreover, they strengthen the taxonomic connections between the Laguna del Hunco paleoflora and extant subtropical and tropical Australasia, one of the three major ecologic-geographic elements of the Laguna del Hunco paleoflora. The age and affinities of the fossils also indicate that Eucalyptus subgenus Symphyomyrtus is older than previously supposed. Paleoecological data indicate that the Patagonian Eucalyptus dominated volcanically disturbed areas adjacent to standing rainforest surrounding an Eocene caldera lake.


Asunto(s)
Eucalyptus , Fósiles , América del Sur
16.
Proc Natl Acad Sci U S A ; 102(25): 8944-8, 2005 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-15956213

RESUMEN

South America has some of the most diverse floras and insect faunas that are known, but its Cenozoic fossil record of insects and insect herbivory is sparse. We quantified insect feeding on 3,599 leaves from the speciose Laguna del Hunco flora (Chubut, Argentina), which dates to the early Eocene climatic optimum (52 million years ago) and compared the results with three well preserved, rich, and identically analyzed early- and middle-Eocene floras from the following sites in North America: Republic, WA; Green River, UT; and Sourdough, WY. We found significantly more damage diversity at Laguna del Hunco than in the North American floras, whether measured on bulk collections or on individual plant species, for both damage morphotypes and feeding groups. An ancient history of rich, specialized plant-insect associations on diverse plant lineages in warm climates may be a major factor contributing to the current biodiversity of South America.


Asunto(s)
Biodiversidad , Fósiles , Plantas/clasificación , Animales , Insectos/fisiología , América del Norte , Hojas de la Planta/anatomía & histología , Hojas de la Planta/parasitología , América del Sur
17.
Am Nat ; 165(6): 634-50, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15937744

RESUMEN

The origins of South America's exceptional plant diversity are poorly known from the fossil record. We report on unbiased quantitative collections of fossil floras from Laguna del Hunco (LH) and Río Pichileufú (RP) in Patagonia, Argentina. These sites represent a frost-free humid biome in South American middle latitudes of the globally warm Eocene. At LH, from 4,303 identified specimens, we recognize 186 species of plant organs and 152 species of leaves. Adjusted for sample size, the LH flora is more diverse than comparable Eocene floras known from other continents. The RP flora shares several taxa with LH and appears to be as rich, although sampling is preliminary. The two floras were previously considered coeval. However, (40)Ar/(39)Ar dating of three ash-fall tuff beds in close stratigraphic association with the RP flora indicates an age of 47.46+/-0.05 Ma, 4.5 million years younger than LH, for which one tuff is reanalyzed here as 51.91+/-0.22 Ma. Thus, diverse floral associations in Patagonia evolved by the Eocene, possibly in response to global warming, and were persistent and areally extensive. This suggests extraordinary richness at low latitudes via the latitudinal diversity gradient, corroborated by published palynological data from the Eocene of Colombia.


Asunto(s)
Biodiversidad , Plantas , Argentina , Clima , Fósiles , Geografía , Paleontología
18.
Science ; 300(5616): 122-5, 2003 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-12677065

RESUMEN

Tropical South America has the highest plant diversity of any region today, but this richness is usually characterized as a geologically recent development (Neogene or Pleistocene). From caldera-lake beds exposed at Laguna del Hunco in Patagonia, Argentina, paleolatitude approximately 47 degrees S, we report 102 leaf species. Radioisotopic and paleomagnetic analyses indicate that the flora was deposited 52 million years ago, the time of the early Eocene climatic optimum, when tropical plant taxa and warm, equable climates reached middle latitudes of both hemispheres. Adjusted for sample size, observed richness exceeds that of any other Eocene leaf flora, supporting an ancient history of high plant diversity in warm areas of South America.


Asunto(s)
Ecosistema , Fósiles , Plantas , Argentina , Clima , Ecología , Sedimentos Geológicos , América del Norte , Desarrollo de la Planta , Hojas de la Planta/anatomía & histología , Plantas/clasificación , Lluvia , América del Sur , Temperatura , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA