Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.245
Filtrar
1.
J Control Release ; 375: 236-248, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39245419

RESUMEN

Spinal cord injury (SCI) is incurable and raises growing concerns. The main barrier to nerve repair is the complicated inhibitory microenvironment, where single-targeted strategies are largely frustrated. Despite the progress in combinatory therapeutic systems, the development and translation of effective therapies remain a challenge with extremely limited clinical materials. In this study, mesenchymal stem cells are transplanted in combination with sustained release of methylprednisolone through delivery in one composite matrix of a microsphere-enveloped adhesive hydrogel. All the materials used, including the stem cells, drug, and the matrix polymers gelatin and hyaluronan, are clinically approved. The therapeutic effects and safety issues are evaluated on rat and canine SCI models. The implantation significantly promotes functional restoration and nerve repair in a severe long-span rat spinal cord transection model. Distant spinal cord segments and the urinary system are effectively protected against pathologic damage. Moreover, the local sustained drug delivery mitigates the inflammatory microenvironment when overcoming the clinical issue of systemic side effects. The study presents an innovative strategy to achieve safe and efficient combinatory treatment of SCI.

2.
Inorg Chem ; 63(37): 17298-17304, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39238210

RESUMEN

Adsorptive ethylene separation from the C2H2/C2H4/C2H6/CO2 four-component gas mixture provides a low-energy input solution for industrial ethylene purification, yet it is still a great challenge. Herein, we report a facile scaled-up synthesis of a stable ultramicroporous coordination network of Zn-CO3-datz (Hdatz = 3,5-diamine-1,2,4-triazole), which enables selective adsorption of C2H2, C2H4 and CO2 over C2H4, thanks to its specific pore environment supported by GCMC simulation of gas adsorption sites. Dynamic breakthrough experiments exhibited efficient one-step production of polymer-grade (≥99.95%) C2H4 from the quaternary C2H4/C2H2/C2H6/CO2 (1/1/1/1) mixture, with excellent C2H4 productivity of 0.12 mol kg-1 at 298 K. Moreover, it can be easily synthesized in kilogram scale with an affordable and low-cost ligand, rendering its further potential industrial applications.

3.
Org Lett ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39326000

RESUMEN

A chlorotrimethylsilane (TMSCl)-mediated cascade phosphorylation and cycloisomerization of enynones with diphenylphosphine oxides is presented. This methodology enables the highly selective synthesis of monophosphorylated 2H-pyrans and bisphosphorylated dihydropyrans through precise solvent-reagent stoichiometry control. The strategy demonstrated excellent functional group compatibility and high yields (up to 96%), providing facile access to structurally diverse phosphorylated heterocycles with potential applications in medicinal chemistry and materials science.

4.
Huan Jing Ke Xue ; 45(9): 5372-5384, 2024 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-39323155

RESUMEN

As the forefront of implementing China's "Yellow River Major National Strategy," the lower Yellow River area has caused irreversible "constructive destruction" to the regional natural ecosystem and ecological functions while accelerating the process of urbanization and has become an area of sharp contradiction between ecological protection and high-quality development of the river basin. Therefore, based on ArcGIS and MATLAB software, this study used the InVEST and RUSLE models to quantitatively assess water yield, habitat quality, and soil conservation services of the lower Yellow River Region from 1990 to 2020 and analyzed the spatial and temporal characteristics and their interaction relationships of various ecosystem services. The results showed that: ① In the period from 1990 to 2020, the land urbanization process accelerated significantly, with the expansion of construction land increasing by 39.89%, whereas the area of other major land types had declined to varying degrees. ② From 1990 to 2020, the distribution patterns on the county scale and grid-scale in the lower Yellow River Region were relatively consistent. The water yield and soil conservation experienced a changing trend of first decreasing and then increasing, and the spatial distribution pattern of water yield gradually shifted to more in the east and less in the west. The spatial distribution patterns of soil conservation and habitat quality remained unchanged throughout the period, with the high values distributed in the hilly or mountainous regions of the higher terrain and the low values mainly in the plains of the gentle terrain. ③ At both the grid scale and county scale, the interaction relationships between various ecosystem services had been dominated by synergy and showed significant spatial heterogeneity. Especially at the county level, strong trade-offs were occurring in a few counties. For example, the relationship between water yields and habitat quality was a significant and strong trade-off between Weishan County and Huaiyin District. The study quantified the spatial and temporal evolution characteristics of ecosystem services in the lower Yellow River Region and clarified the trade-off synergistic relationships between ecosystem services, which can provide a scientific basis for ecological protection and watershed management under the rapid urbanization process.

5.
Genes Immun ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242755

RESUMEN

Penile squamous cell carcinoma (PSCC) is becoming increasingly common and posing a severe threat to men's health, particularly in developing countries. The function of long non-coding RNAs (lncRNAs) in PSCC progression remains mysterious. Therefore, we explored the significance of lncRNAs in the competing endogenous RNA (ceRNA) network in PSCC tumor progression. The 5 healthy and 6 tumor tissue samples were subjected to lncRNA sequencing. Using miRcode, LncBase, miRTarBase, miRWalk, and TargetScan, we constructed a ceRNA network of differentially expressed lncRNAs, miRNAs, and mRNAs. Our analysis resulted in a ceRNA network consisting of 4 lncRNAs, 18 miRNAs, and 38 mRNAs, whose upstream regulators, the lncRNAs MIR205HG, MIAT, HCP5, and PVT1, were all elevated in PSCC. Immunohistochemical staining confirmed that cell proliferation-related genes TFAP2C, MKI67, and TP63, positively regulated by 4 lncRNAs, were considerably overexpressed in tumor tissues. Immune analysis revealed a significant upregulation in macrophage and exhausted T cell infiltration in PSCC. Our study identified a lncRNA-miRNA-mRNA ceRNA network for PSCC, revealing possible molecular mechanisms involved in the regulation of PSCC progression by key lncRNAs and their connections to the immunosuppressive tumor microenvironment. The ceRNA network provides a novel perspective for elucidating the pathogenesis of PSCC.

6.
Skin Res Technol ; 30(9): e70025, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39297705

RESUMEN

BACKGROUND: Enlarged pores are amidst one of the top cosmetic concerns, especially among Chinese. Many small-group studies have been conducted in understanding their prevalence and beauty relevance. Nonetheless, population-level investigations are still lacking because of gaps in data collection and processing of large-scale studies. Owing to the recent technological advancement enabled by artificial intelligence, databases on the scale of millions can be processed and analyzed readily. MATERIALS AND METHODS: Powered by big data capabilities, revealed a number of novel trends on pore conditions among over-a-million Chinese participants recruited via the "You Look Great Today" mobile application. A scoring model was constructed, which demonstrated high consistency with conventional grading method from dermatologists. Environmental data (weather, air pollution, light at night satellite) were applied to correlate with pore severity. RESULTS: Intraclass correlations between the two scoring systems were strong, with coefficients ranging from 0.79 to 0.92 for different facial areas. Statistical differences in pore severity among all four facial areas (cheek, forehead, nose, and overall) were observed, with the cheek exhibiting the most severe pore condition. Interestingly, Chinese men suffer from more severe pore condition than females. Multiple environmental factors exhibited strong correlations with cheek pore severity and were statistically fitted into linear regressions. Specifically, incremental risk with Each Low Temperature, Low Humidity, And High Solar Exposure correlate to worse cheek pore conditions. Although the Pearson correlation was low between cheek pore severity and light at night, comparison between representative cities demonstrated that in geologically similar cities, higher light at night corresponds to more severe cheek pore conditions. CONCLUSION: Our study is showcasing a robust and reliable AI model in facial pore evaluation. More importantly, insights uncovered using this facile approach also bear significant cosmetic ramifications in treatment of pore enlargement.


Asunto(s)
Inteligencia Artificial , Cara , Humanos , Femenino , Masculino , Adulto , China/epidemiología , Persona de Mediana Edad , Prevalencia , Adulto Joven , Anciano , Piel/efectos de la radiación , Piel/patología , Adolescente , Tiempo (Meteorología) , Pueblo Asiatico , Porosidad , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , Pueblos del Este de Asia
7.
Nutr Cancer ; : 1-10, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39327695

RESUMEN

OBJECTIVE: This study aimed to evaluate the efficacy of a double-lumen biliary-enteric tube (DBET) for enteral nutrition (EN) in individuals with malignant obstructive jaundice (MOJ). METHODS: A retrospective cohort study was conducted using data from a prospectively maintained single-center database, including patients with MOJ. In the intervention group, DBET placement was performed concurrently with percutaneous transhepatic cholangiodrainage and biliary stenting, followed by postoperative EN (DBET-EN). In the control group, deep vein catheterization was undertaken after endoscopic biliary stenting, and parenteral nutrition (PN) was provided. A multivariable generalized linear model was used to assess the association between DBET-EN and 6-month mortality. RESULTS: A total of 74 patients were included in this study, comprising 28 patients in the intervention group (DBET-EN group) and 46 patients in the control group (PN group). Within the 6-month follow-up, 5 patients (17.9%) in the DBET-EN group and 20 (43.5%) in the PN group died. The multivariable generalized linear model demonstrated a significantly reduced 6-month mortality in the DBET-EN group compared to the PN group (adjusted odds ratio [OR]: 0.25, 95% CI: 0.08-0.81, P = 0.020). Secondary outcomes indicated that patients in the DBET-EN group had lower 9-month mortality rates and longer tube retention durations compared to the PN group (all adjusted P < 0.05). Postoperative liver function improved similarly in both groups. At 3, 6, and 9 months postoperatively, patient-generated subjective global assessment (PG-SGA) scores and the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-C30 (EORTC QLQ-C30) scores were significantly higher in the DBET-EN group than in the PN group (P < 0.05). CONCLUSION: The implementation of DBET for EN in patients in the advanced stage of MOJ proved to be a minimally invasive and safe intervention. It significantly improved patients' nutritional status and quality of life while reducing mortality.

8.
Toxics ; 12(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39195664

RESUMEN

Pesticide residues in soil, especially multiple herbicide residues, cause a series of adverse effects on soil properties and microorganisms. In this work, the degradation of three herbicides and the effect on bacterial communities under combined pollution was investigated. The experimental results showed that the half-lives of acetochlor and prometryn significantly altered under combined exposure (5.02-11.17 d) as compared with those of individual exposure (4.70-6.87 d) in soil, suggesting that there was an antagonistic effect between the degradation of acetochlor and prometryn in soil. No remarkable variation in the degradation rate of atrazine with half-lives of 6.21-6.85 d was observed in different treatments, indicating that the degradation of atrazine was stable. 16S rRNA high-throughput sequencing results showed that the antagonistic effect of acetochlor and prometryn on the degradation rate under combined pollution was related to variation of the Sphingomonas and Nocardioide. Furthermore, the potential metabolic pathways of the three herbicides in soil were proposed and a new metabolite of acetochlor was preliminarily identified. The results of this work provide a guideline for the risk evaluation of combined pollution of the three herbicides with respect to their ecological effects in soil.

9.
ACS Appl Mater Interfaces ; 16(36): 47206-47215, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39190615

RESUMEN

Rheumatoid arthritis (RA) is a systemic autoimmune disorder that severely compromises joint health. The primary therapeutic strategy for advanced RA aims to inhibit joint inflammation. However, the nonspecific distribution of pharmacological agents has limited therapeutic efficacy and heightens the risks associated with RA treatment. To address this issue, we developed mesenchymal stem cell (MSC)-based biomimetic liposomes, termed MSCsome, which were composed of a fusion between MSC membranes and liposomes. MSC some with relatively simple preparation method effectively enhanced the targeting efficiency of drug to diseased joints. Interaction between lymphocyte function-associated antigen-1 and intercellular adhesion molecule-1 enhanced the affinity of the MSCsome for polarized macrophages, thereby improving its targeting capability to affected joints. The effective targeted delivery facilitated drug accumulation in joints, resulting in the significant inhibition of the inflammation, as well as protection and repair of the cartilage. In conclusion, this study introduced MSCsome as a promising approach for the effective treatment of advanced RA, providing a novel perspective on targeted drug delivery therapy for inflammatory diseases.


Asunto(s)
Artritis Reumatoide , Dexametasona , Sistemas de Liberación de Medicamentos , Liposomas , Células Madre Mesenquimatosas , Liposomas/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/patología , Dexametasona/administración & dosificación , Humanos , Animales , Ratones , Células Endoteliales de la Vena Umbilical Humana , Ratones Endogámicos BALB C , Ratones Endogámicos DBA , Masculino , Biomimética , Cartílago/efectos de los fármacos , Cartílago/patología
10.
Adv Mater ; : e2405953, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101293

RESUMEN

Implant-associated infections (IAIs) are the main cause of prosthetic implant failure. Bacterial biofilms prevent antibiotic penetration, and the unique metabolic conditions in hypoxic biofilm microenvironment may limit the efficacy of conventional antibiotic treatment. Escaping survival bacteria may not be continually eradicated, resulting in the recurrence of IAIs. Herein, a sonosensitive metal-organic framework of Cu-TCPP (tetrakis(4-carboxyphenyl) porphyrin) nanosheets and tinidazole doped probiotic-derived membrane vesicles (OMVs) with high-penetration sonodynamic therapy (SDT), bacterial metabolic state interference, and bacterial cuproptosis-like death to eradicate IAIs is proposed. The Cu-TCPP can convert O2 to toxic 1O2 through SDT in the normoxic conditions, enhancing the hypoxic microenvironment and activating the antibacterial activity of tinidazole. The released Cu(II) under ultrasound can be converted to Cu(I) by exogenous poly(tannic acid) (pTA) and endogenous glutathione. The disruption of the bacterial membrane by SDT can enhance the Cu(I) transporter activity. Transcriptomics indicate that the SDT-enhanced Cu(I) overload and hypoxia-activated therapy hinder the tricarboxylic acid cycle (TCA), leading to bacterial cuproptosis-like death. Moreover, the OMVs-activated therapy can polarize macrophages to a M2-like phenotype and facilitate bone repair. The sonodynamic biofilm microenvironment modulation strategy, whereby the hypoxia-enhanced microenvironment is potentiated to synergize SDT with OMVs-activated therapy, provides an effective strategy for antibacterial and osteogenesis performance.

11.
Chem Sci ; 15(30): 11928-11936, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39092100

RESUMEN

The introduction of heterogeneous components within one single coordination network leads to the multifunctionality of the final material. However, it is hard to precisely control the local distribution of these different components in such a coordination network, especially for different components with identical topological connectivity. In this study, we successfully achieved the ordered assembly of [Mn3(µ3-O)] nodes and [Mn6(µ3-O)2(CH3COO)3] nodes within one pacs coordination network. The resulting new structure (NPU-6) with heterogeneous metal nodes simultaneously inherits the advantages of both parent networks (good thermal stability and high pore volume). The significant effect of the reaction concentration of competing ligand CH3COO- on the mixed assembly of these two nodes in NPU-6 is revealed by a series of control experiments. This method is anticipated to offer a valuable reference for orderly assembling heterogeneous components in coordination networks.

12.
Phys Rev Lett ; 133(3): 033001, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39094169

RESUMEN

We present a novel approach for measuring the differential static scalar polarizability of a target ion utilizing a "polarizability scale" scheme with a reference ion co-trapped in a linear Paul trap. The differential static scalar polarizability of the target ion can be precisely extracted by measuring the ratio of the ac Stark shifts induced by an add-on infrared laser shed on both ions. This method circumvents the need for the calibration of the intensity of the add-on laser, which is usually the bottleneck for measurements of the polarizability of trapped ions. As a demonstration, ^{27}Al^{+} (the target ion) and ^{40}Ca^{+} (the reference ion) are used in this work, with an add-on laser at 1068 nm injected into the ion trap along the trap axis. The differential static scalar polarizability of ^{27}Al^{+} is extracted to be 0.416(14) a.u. by measuring the ratio of the ac Stark shifts of both ions. Compared to the most recent result [Phys. Rev. Lett. 123, 033201 (2019)PRLTAO0031-900710.1103/PhysRevLett.123.033201], the relative uncertainty of the differential static scalar polarizability of ^{27}Al^{+} is reduced by approximately a factor of 4, to 3.4%. This improvement is expected to be further enhanced by using an add-on laser with a longer wavelength.

13.
Front Oncol ; 14: 1433874, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132501

RESUMEN

Background: Increasing evidence reveals the involvement of mitochondria and macrophage polarisation in tumourigenesis and progression. This study aimed to establish mitochondria and macrophage polarisation-associated molecular signatures to predict prognosis in gastric cancer (GC) by single-cell and transcriptional data. Methods: Initially, candidate genes associated with mitochondria and macrophage polarisation were identified by differential expression analysis and weighted gene co-expression network analysis. Subsequently, candidate genes were incorporated in univariateCox analysis and LASSO to acquire prognostic genes in GC, and risk model was created. Furthermore, independent prognostic indicators were screened by combining risk score with clinical characteristics, and a nomogram was created to forecast survival in GC patients. Further, in single-cell data analysis, cell clusters and cell subpopulations were yielded, followed by the completion of pseudo-time analysis. Furthermore, a more comprehensive immunological analysis was executed to uncover the relationship between GC and immunological characteristics. Ultimately, expression level of prognostic genes was validated through public datasets and qRT-PCR. Results: A risk model including six prognostic genes (GPX3, GJA1, VCAN, RGS2, LOX, and CTHRC1) associated with mitochondria and macrophage polarisation was developed, which was efficient in forecasting the survival of GC patients. The GC patients were categorized into high-/low-risk subgroups in accordance with median risk score, with the high-risk subgroup having lower survival rates. Afterwards, a nomogram incorporating risk score and age was generated, and it had significant predictive value for predicting GC survival with higher predictive accuracy than risk model. Immunological analyses revealed showed higher levels of M2 macrophage infiltration in high-risk subgroup and the strongest positive correlation between risk score and M2 macrophages. Besides, further analyses demonstrated a better outcome for immunotherapy in low-risk patients. In single-cell and pseudo-time analyses, stromal cells were identified as key cells, and a relatively complete developmental trajectory existed for stromal C1 in three subclasses. Ultimately, expression analysis revealed that the expression trend of RGS2, GJA1, GPX3, and VCAN was consistent with the results of the TCGA-GC dataset. Conclusion: Our findings demonstrated that a novel prognostic model constructed in accordance with six prognostic genes might facilitate the improvement of personalised prognosis and treatment of GC patients.

14.
Sci Rep ; 14(1): 19352, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169215

RESUMEN

This study aims to evaluate the prognostic utility of Activity-dependent neuroprotective protein (ADNP) expression in Circulating Tumor Cells (CTCs) inpatients with Non-muscle-invasive Bladder Cancer (NMIBC) undergoing Transurethral Resection of Bladder Tumor (TURBT). A prospective cohort of 74 bladder cancer patients and 22 non-cancer controls were enrolled. The expression of ADNP mRNA was detected by immunomagnetic beads-droplet digital PCR. The ADNP mRNA expression was evaluated in patients with high-risk NMIBC and those with indeterminate invasion depth post 2nd TURBT. Primary cultured bladder cancer cells and PBMCs from healthy donors were immunofluorescence stained. Our findings suggest that baseline ADNP mRNA level in CTCs shows potential as a prognostic marker for NMIBC with a sensitivity of 83.33% and a specificity of 73.58%. In comparison to baseline, ADNP mRNA expression increased post 2nd TURBT in 5 patients, where 2 experienced recurrence. Meanwhile, among the 12 patients with decreased levels, only one patient relapsed. A considerable limitation of this study entails the small sample size. The Immuno-magnetic beads-ddPCR technique provided a viable method for ADNP mRNA detection in CTCs from bladder cancer patients. The preoperative ADNP mRNA level in CTCs was identified as a prognostic indicator for NMIBC. Longitudinal monitoring of ADNP mRNA in CTCs of bladder cancer patients shows promise in evaluating treatment responses and predicting prognosis.


Asunto(s)
Biomarcadores de Tumor , Células Neoplásicas Circulantes , Neoplasias Vesicales sin Invasión Muscular , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Invasividad Neoplásica , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neoplasias Vesicales sin Invasión Muscular/sangre , Neoplasias Vesicales sin Invasión Muscular/diagnóstico , Neoplasias Vesicales sin Invasión Muscular/genética , Neoplasias Vesicales sin Invasión Muscular/patología , Pronóstico , Estudios Prospectivos , ARN Mensajero/genética , ARN Mensajero/metabolismo
15.
J Org Chem ; 89(17): 12848-12852, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39145490

RESUMEN

We describe a visible light-induced palladium-catalyzed radical germylative arylation of alkenes with easily accessible chlorogermanes. This protocol provides expedient access to germanium-substituted indolin-2-ones in good to excellent yields under mild reaction conditions. The key step for this strategy lies in the reductive activation of germanium-chloride bonds with an excited palladium complex under visible light irradiation. The involvement of germanium radicals was evidenced by electron paramagnetic resonance spectroscopy experiments.

16.
mBio ; 15(9): e0140424, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39082798

RESUMEN

Two different sarbecoviruses, severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2, have caused serious challenges to public health. Certain sarbecoviruses utilize angiotensin-converting enzyme 2 (ACE2) as their cellular receptor, whereas some do not, speculatively due to the two deletions in their receptor-binding domain (RBD). However, it remains unclear whether sarbecoviruses with one deletion in the RBD can still bind to ACE2. Here, we showed that two phylogenetically related sarbecoviruses with one deletion, BtKY72 and BM48-31, displayed a different ACE2-usage range. The cryo-electron microscopy structure of BtKY72 RBD bound to bat ACE2 identified a key residue important for the interaction between RBD and ACE2. In addition, we demonstrated that the mutations involving four types of core residues enabled the sarbecoviruses with deletion(s) to bind to human ACE2 (hACE2) and broadened the ACE2 usage of SARS-CoV-2. Our findings help predict the potential hACE2-binding ability to emerge sarbecoviruses and develop pan-sarbecovirus therapeutic agents. IMPORTANCE: Many sarbecoviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), possess the ability to bind to receptor angiotensin-converting enzyme 2 (ACE2) through their receptor-binding domain (RBD). However, certain sarbecoviruses with deletion(s) in the RBD lack this capability. In this study, we investigated two closely related short-deletion sarbecoviruses, BtKY72 and BM48-31, and revealed that BtKY72 exhibited a broader ACE2-binding spectrum compared to BM48-31. Structural analysis of the BtKY72 RBD-bat ACE2 complex identifies a critical residue at position 493 contributing to these differences. Furthermore, we demonstrated that the mutations involving four core residues in the RBD enabled the sarbecoviruses with deletion(s) to bind to human ACE2 and expanded the ACE2 usage spectra of SARS-CoV-2. These findings offer crucial insights for accurately predicting the potential threat of newly emerging sarbecoviruses to human health.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Quirópteros , Microscopía por Crioelectrón , Unión Proteica , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Humanos , Animales , SARS-CoV-2/genética , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Quirópteros/virología , Dominios Proteicos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , COVID-19/virología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Receptores Virales/metabolismo , Receptores Virales/química , Receptores Virales/genética
17.
Cell Signal ; 122: 111311, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39059755

RESUMEN

Cyclic adenosine monophosphate (cAMP) is an intracellular second messenger that is derived from the conversion of adenosine triphosphate catalysed by adenylyl cyclase (AC). Protein kinase A (PKA), the main effector of cAMP, is a dimeric protein kinase consisting of two catalytic subunits and two regulatory subunits. When cAMP binds to the regulatory subunits of PKA, it leads to the dissociation and activation of PKA, which allows the catalytic subunit of PKA to phosphorylate target proteins, thereby regulating various physiological functions and metabolic processes in cellular function. Recent researches also implicate the involvement of cAMP-PKA signaling in the pathologenesis of anxiety disorder. However, there are still debates on the prevention and treatment of anxiety disorders from this signaling pathway. To review the function of cAMP-PKA signaling in anxiety disorder, we searched the publications with the keywords including "cAMP", "PKA" and "Anxiety" from Pubmed, Embase, Web of Science and CNKI databases. The results showed that the number of publications on cAMP-PKA pathway in anxiety disorder tended to increase. Bioinformatics results displayed a close association between the cAMP-PKA pathway and the occurrence of anxiety. Mechanistically, cAMP-PKA signaling could influence brain-derived neurotrophic factor and neuropeptide Y and participate in the regulation of anxiety. cAMP-PKA signaling could also oppose the dysfunctions of gamma-aminobutyric acid (GABA), intestinal flora, hypothalamic-pituitary-adrenal axis, neuroinflammation, and signaling proteins (MAPK and AMPK) in anxiety. In addition, chemical agents with the ability to activate cAMP-PKA signaling demonstrated therapy potential against anxiety disorders. This review emphasizes the central roles of cAMP-PKA signaling in anxiety and the targets of the cAMP-PKA pathway would be potential candidates for treatment of anxiety. Nevertheless, more laboratory investigations to improve the therapeutic effect and reduce the adverse effect, and continuous clinical research will warrant the drug development.


Asunto(s)
Ansiedad , Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Transducción de Señal , Humanos , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Animales , Ansiedad/metabolismo
18.
PLoS One ; 19(7): e0307517, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39024277

RESUMEN

Seaweed fertilizer, formulated primarily with seaweed extract as its main ingredient, has been extensively studied and found to significantly improve nutrient use efficiency, increase crop yield and quality, and enhance soil properties under field conditions. This growing body of evidence shows that seaweed fertilizer is a suitable option for sustainable agriculture in China. However, a comprehensive and quantitative analysis of the overall effects of seaweed fertilizer application in China is lacking. To address this gap, we conducted a meta-analysis of relevant studies on the effects of seaweed fertilizers under field conditions in China with MetaWin and SPSS software. Our analysis examined the effects of seaweed fertilizers on crop yield, quality, and growth under different preparation methods, application techniques, and regions. Our results showed that the application of seaweed fertilizer led to a significant average increase in crop yield of 15.17% compared with the control treatments. Root & tuber crops exhibited the most pronounced response, with a yield boost of 21.19%. Moreover, seaweed fertilizer application significantly improved crop quality, with elevations in the sugar-acid ratio (38.32%) vitamin C (18.07%), starch (19.65%), and protein (11.45%). In addition, plant growth parameters such as height, stem thickness, root weight, and leaf area showed significant enhancement with seaweed fertilizer use. The yield-increasing effect of seaweed fertilizers varied depending on their preparation and use method, climate, and soil of application location. Our study provides fundamental reference data for the efficient and scientific application of seaweed fertilizers in agricultural practices.


Asunto(s)
Productos Agrícolas , Fertilizantes , Algas Marinas , Fertilizantes/análisis , Algas Marinas/crecimiento & desarrollo , China , Productos Agrícolas/crecimiento & desarrollo , Producción de Cultivos/métodos , Agricultura/métodos , Suelo/química
19.
Sci Adv ; 10(27): eadl2142, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968346

RESUMEN

The impact of anthropogenic global warming on tropical cyclone (TC) frequency remains a challenging issue, partly due to a relatively short period of reliable observational TC records and inconsistencies in climate model simulations. Using TC detection from 20 CMIP6 historical simulations, we show that the majority (75%) of these models show a decrease in global-scale TC frequency from 1850 to 2014. We demonstrated that this result is largely explained by weakened mid-tropospheric upward motion in CMIP6 models over the Pacific and Atlantic main development regions. The reduced upward motion is due to a zonal circulation adjustment and shifts in Intertropical Convergence Zone in response to global warming. In the South Indian Ocean, reduced TC frequency is mainly due to the decreased survival rate of TC seeds because of an increased saturation deficit in a warming climate. Our analysis highlights global warming's potential impact on the historical decrease in global TC frequency.

20.
J Orthop Surg Res ; 19(1): 388, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956678

RESUMEN

BACKGROUND: In patients undergoing total joint arthroplasty (TJA), the administration of dexamethasone may contribute to perioperative blood glucose (BG) disturbances, potentially resulting in complications, even in patients without diabetes. This study aimed to demonstrate the impact of different administration regimens of dexamethasone in postoperative BG levels. METHODS: In this randomized, controlled, double-blind trial, 136 patients without diabetes scheduled for TJA were randomly assigned to three groups: two perioperative saline injections (Group A, placebo); a single preoperative injection of 20 mg dexamethasone and a postoperative saline injection (Group B), and two perioperative injections of 10 mg dexamethasone (Group C). Primary outcomes were the postoperative fasting blood glucose (FBG) levels. Secondary outcome parameters were the postoperative postprandial blood glucose (PBG) levels. Postoperative complications within 90 days were also recorded. Risk factors for FBG ≥ 140 mg/dl and PBG ≥ 180 mg/dl were investigated. RESULTS: Compared to Group A, there were transient increases in FBG and PBG on postoperative days (PODs) 0 and 1 in Groups B and C. Statistical differences in FBG and PBG among the three groups were nearly absent from POD 1 onward. Both dexamethasone regimens did not increase the risk for postoperative FBG ≥ 140 mg/dl or PBG ≥ 180 mg/dl. Elevated preoperative HbA1c levels may increase the risk of postoperative FBG ≥ 140 mg/dl or PBG ≥ 180 mg/dl, respectively. CONCLUSION: Perioperative intravenous high-dose dexamethasone to patients without diabetes has transient effects on increasing BG levels after TJA. However, no differences were found between the split-dose and single high-dose regimens. The elevated preoperative HbA1c, but not the dexamethasone regimens were the risk factor for FBG ≥ 140 mg/dl and PBG ≥ 180 mg/dl. TRIAL REGISTRATION: Chinese Clinical Trail Registry, ChiCTR2300069473. Registered 17 March 2023, https://www.chictr.org.cn/showproj.html?proj=186760 .


Asunto(s)
Glucemia , Dexametasona , Humanos , Dexametasona/administración & dosificación , Método Doble Ciego , Masculino , Femenino , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Persona de Mediana Edad , Anciano , Complicaciones Posoperatorias/prevención & control , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/sangre , Inyecciones Intravenosas , Periodo Posoperatorio , Artroplastia de Reemplazo de Cadera/efectos adversos , Glucocorticoides/administración & dosificación , Artroplastia de Reemplazo/efectos adversos , Administración Intravenosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA