Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Front Public Health ; 12: 1355094, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915753

RESUMEN

Introduction: The presence of the Penicillium section Aspergilloides (formerly known as Penicillium glabrum) in the cork industry involves the risk of respiratory diseases such as suberosis. Methods: The aim of this study was to corroborate the predominant fungi present in this occupational environment by performing a mycological analysis of 360 workers' nasal exudates collected by nasal swabs. Additionally, evaluation of respiratory disorders among the cork workers was also performed by spirometry. Results: Penicillium section Aspergilloides was detected by qPCR in 37 out of the 360 nasal swabs collected from workers' samples. From those, 25 remained negative for Penicillium sp. when using culture-based methods. A significant association was found between ventilatory defects and years of work in the cork industry, with those people working for 10 or more years in this industry having an approximately two-fold increased risk of having ventilatory defects compared to those working less time in this setting. Among the workers who detected the presence of Penicillium section Aspergilloides, those with symptoms presented slightly higher average values of CFU. Discussion: Overall, the results obtained in this study show that working in the cork industry may have adverse effects on worker's respiratory health. Nevertheless, more studies are needed (e.g., using serological assays) to clarify the impact of each risk factor (fungi and dust) on disease etiology.


Asunto(s)
Exposición Profesional , Penicillium , Humanos , Exposición Profesional/efectos adversos , Portugal , Penicillium/aislamiento & purificación , Masculino , Adulto , Persona de Mediana Edad , Femenino , Espirometría , Industrias
2.
Microorganisms ; 12(6)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38930597

RESUMEN

Microbial contamination poses a threat to both the preservation of library and archival collections and the health of staff and users. This study investigated the microbial communities and potential health risks associated with the UNESCO-classified Norwegian Sea Trade Archive (NST Archive) collection exhibiting visible microbial colonization and staff health concerns. Dust samples from book surfaces and the storage environment were analysed using culturing methods, qPCR, Next Generation Sequencing, and mycotoxin, cytotoxicity, and azole resistance assays. Penicillium sp., Aspergillus sp., and Cladosporium sp. were the most common fungi identified, with some potentially toxic species like Stachybotrys sp., Toxicladosporium sp., and Aspergillus section Fumigati. Fungal resistance to azoles was not detected. Only one mycotoxin, sterigmatocystin, was found in a heavily contaminated book. Dust extracts from books exhibited moderate to high cytotoxicity on human lung cells, suggesting a potential respiratory risk. The collection had higher contamination levels compared to the storage environment, likely due to improved storage conditions. Even though overall low contamination levels were obtained, these might be underestimated due to the presence of salt (from cod preservation) that could have interfered with the analyses. This study underlines the importance of monitoring microbial communities and implementing proper storage measures to safeguard cultural heritage and staff well-being.

3.
Environ Pollut ; 350: 123976, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657893

RESUMEN

The lack of knowledge regarding the extent of microbial contamination in Portuguese fitness centers (FC) puts attendees and athletes at risk for bioaerosol exposure. This study intends to characterize microbial contamination in Portuguese FC by passive sampling methods: electrostatic dust collectors (EDC) (N = 39), settled dust (N = 8), vacuum filters (N = 8), and used cleaning mops (N = 12). The obtained extracts were plated in selective culture media for fungi and bacteria. Filters, EDC, and mop samples' extracts were also screened for antifungal resistance and used for the molecular detection of the selected Aspergillus sections. The detection of mycotoxins was conducted using a high-performance liquid chromatograph (HPLC) system and to determine the cytotoxicity of microbial contaminants recovered by passive sampling, HepG2 (human liver carcinoma) and A549 (human alveolar epithelial) cells were employed. The results reinforce the use of passive sampling methods to identify the most critical areas and identify environmental factors that influence microbial contamination, namely having a swimming pool. The cardio fitness area presented the highest median value of total bacteria (TSA: 9.69 × 102 CFU m-2.day-1) and Gram-negative bacteria (VRBA: 1.23 CFU m-2.day-1), while for fungi it was the open space area, with 1.86 × 101 CFU m-2.day-1. Aspergillus sp. was present in EDC and in filters used to collect settled dust. Reduced azole susceptibility was observed in filters and EDC (on ICZ and VCZ), and in mops (on ICZ). Fumonisin B2 was the only mycotoxin detected and it was present in all sampling matrixes except settled dust. High and moderate cytotoxicity was obtained, suggesting that A549 cells were more sensitive to samples' contaminants. The observed widespread of critical toxigenic fungal species with clinical relevance, such as Aspergillus section Fumigati, as well as Fumonisin B2 emphasizes the importance of frequent and effective cleaning procedures while using shared mops appeared as a vehicle of cross-contamination.


Asunto(s)
Microbiología del Aire , Monitoreo del Ambiente , Hongos , Portugal , Humanos , Monitoreo del Ambiente/métodos , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Micotoxinas/análisis , Polvo/análisis , Células Hep G2 , Células A549 , Bacterias/aislamiento & purificación
4.
J Air Waste Manag Assoc ; 74(3): 145-162, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38166349

RESUMEN

Workers in the waste-processing industry are potentially exposed to high concentrations of biological contaminants, leading to respiratory and digestive problems and skin irritations. However, few data on the exposure of waste collection truck (WCT) drivers are available. The goal was to document the microbial risk of the waste collection truck (WCT) workers while in the vehicle cab. Long-period sampling using the truck air filters (CAF) and short time ambient air sampling in the cab were used. The potential release of microbial particles from CAFs was also investigated since it could contribute to the microbial load of the cabin air. A combination of analytical methods also helped assess the complex mixture of the biological agents. Aspergillus sections Fumigati and Flavi, E. coli, Enterobacter spp. and Legionella spp. were detected in the CAF of trucks collecting three types of waste. The highest levels of bacteria and fungi were found in the CAF from organic WCT. The highest endotoxin concentrations in CAF were 300 EU/cm2. Most of the CAF showed cytotoxic effects on both lung cells and hepatocytes. Only one mycotoxin was detected in a CAF. The maximal concentrations in the ambient WCT air varied according to the type of waste collected. The highest proportion (84%) of the air samples without cytotoxic effects on the lungs cells was for the recyclable material WCTs. The results revealed the potential microbial risk to workers from a complex mixture of bio-contaminants in the cabs of vehicles collecting all types of waste. The sustained cytotoxic effect indicates the potential adverse health-related impact of mixed contaminants (biological and non-biological) for the workers. Overall, this study highlights the benefits of using complementary sampling strategy and combined analytical methods for a the assessment of the microbial risk in work environments and the need to implement protective measures for the workers.Implications: Exposure to microbial agents is a well-known occupational hazard in the waste management sector. No previous study had evaluated the cytotoxicity of ambient air and ventilation filters to document worker exposure to a combination of contaminants during waste collection. This research confirms the usefulness of ventilation filters for long-term characterization of exposure to infectious agents, azole-resistant fungi, coliform bacteria and mycotoxin. Overall, this study highlights the importance of using several sampling and analysis methods for a comprehensive assessment of microbial risk in work environments, as well as the need to implement appropriate protective measures for collection workers.


Complementary sampling strategy and combined analytical methods are helpful in risk assessment.Air filter analysis (long-term sampling) assesses the presence of airborne biological contaminants over a long period.The type of waste collected influences the microbiological hazard of the workers.Waste collection workers are potentially exposed to infectious and mycotoxin-producing fungi.Cytotoxic assays revealed that waste collection workers are potentially.


Asunto(s)
Contaminantes Ocupacionales del Aire , Micotoxinas , Exposición Profesional , Humanos , Contaminantes Ocupacionales del Aire/análisis , Exposición Profesional/análisis , Escherichia coli , Hongos , Micotoxinas/análisis , Pulmón , Vehículos a Motor , Mezclas Complejas/análisis , Microbiología del Aire
5.
Sci Total Environ ; 875: 162602, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36878289

RESUMEN

Microbial contamination in grocery shops (GS) should be evaluated since food commodities are commonly handled by workers and customers increasing the risk of food contamination and disease transmission. The aim of this study was to evaluate the microbial contamination in Portuguese and Spanish GS with a multi-approach protocol using passive (electrostatic dust cloths and surface swabs) sampling methods. The molecular detection of Aspergillus sections, mycotoxin analysis, screening of azole resistance as well as cytotoxicity measurement were conducted to better estimate the potential health risks of exposure and to identify possible relations between the risk factors studied. Fruits/vegetables sampling location was the one identified has being the most contaminated (bacteria and fungi) area in GS from both countries. Aspergillus section Fumigati and Fusarium species were observed in samples from Portuguese groceries with reduced susceptibilities to azoles commonly used in the clinical treatment of fungal infections. Fumonisin B2 was detected in Portuguese GS possible unveiling this emergent threat concerning occupational exposure and food safety. Overall, the results obtained raise concerns regarding human health and food safety and must be surveilled applying a One Health approach.


Asunto(s)
Micotoxinas , Salud Única , Humanos , Portugal , España , Supermercados , Micotoxinas/análisis , Aspergillus , Contaminación de Alimentos/análisis , Frutas/química
6.
Int J Food Microbiol ; 385: 110015, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36403330

RESUMEN

Despite tea beneficial health effects, there is a substantial risk of tea contamination by harmful pathogens and mycotoxins. A total of 40 tea samples (17 green (raw) tea; 13 black (fermented) tea; 10 herbal infusions or white tea) were purchased from different markets located in Lisbon district during 2020. All products were directly available to consumers either in bulk (13) and or in individual packages (27). Bacterial analysis was performed by inoculating 150 µL of samples extracts in tryptic soy agar (TSA) supplemented with 0.2 % nystatin medium for mesophilic bacteria, and in Violet Red bile agar (VRBA) medium for coliforms (Gram-negative bacteria). Fungal research was performed by spreading 150 µL of samples in malt extract agar (MEA) supplemented with 0.05 % chloramphenicol and in dichloran-glycerol agar (DG18) media. The molecular detection of the Aspergillus sections Fumigati, Nidulantes, Circumdati and Flavi was carried out by Real Time PCR (qPCR). Detection of mycotoxins was performed using high performance liquid chromatograph (HPLC) with a mass spectrometry detector. Azole resistance screening was achieved following the EUCAST guidelines. The highest counts of total bacteria (TSA) were obtained in green raw tea (81.6 %), while for coliform counts (VRBA) were found in samples from black raw tea (96.2 %). The highest fungal counts were obtained in green raw tea (87.7 % MEA; 69.6 % DG18). Aspergillus sp. was the most prevalent genus in all samples on MEA (54.3 %) and on DG18 (56.2 %). In the raw tea 23 of the samples (57.5 %) presented contamination by one to five mycotoxins in the same sample. One Aspergillus section Fumigati isolate from green tea beverage recovered form itraconazole-Sabouraud dextrose agar (SDA) medium, presented itraconazole and posaconazole E-test MICs above MIC90 values. Our findings open further discussion regarding the One-Health approach and the necessary investment in researching biological hazards and azole-resistance associated with the production and consumption of tea (in particular green tea).


Asunto(s)
Camellia sinensis , Micotoxinas , Salud Única , Agar , Aspergillus , Azoles , Bacterias , Medios de Cultivo/análisis , Itraconazol/análisis , Micotoxinas/análisis , Té/microbiología
7.
Front Public Health ; 11: 1297725, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38179569

RESUMEN

Introduction: It is of upmost importance to contribute to fill the knowledge gap concerning the characterization of the occupational exposure to microbial agents in the waste sorting setting (automated and manual sorting). Methods: This study intends to apply a comprehensive field sampling and laboratory protocol (culture based-methods and molecular tools), assess fungal azole resistance, as well as to elucidate on potential exposure related health effects (cytotoxicity analyses). Skin-biota samples (eSwabs) were performed on workers and controls to identify other exposure routes. Results: In personal filter samples the guidelines in one automated industry surpassed the guidelines for fungi. Seasonal influence on viable microbial contamination including fungi with reduced susceptibility to the tested azoles was observed, besides the observed reduced susceptibility of pathogens of critical priority (Mucorales and Fusarium sp.). Aspergillus sections with potential toxigenic effect and with clinical relevance were also detected in all the sampling methods. Discussion: The results regarding skin-biota in both controls´ and workers´ hands claim attention for the possible exposure due to hand to face/mouth contact. This study allowed concluding that working in automated and manual waste sorting plants imply high exposure to microbial agents.


Asunto(s)
Monitoreo del Ambiente , Exposición Profesional , Humanos , Monitoreo del Ambiente/métodos , Exposición Profesional/análisis , Aspergillus , Noruega
8.
Artículo en Inglés | MEDLINE | ID: mdl-36294069

RESUMEN

Respiratory abnormalities among workers at coffee roasting and packaging facilities have already been reported; however, little is known about microbiological contamination inside coffee production facilities. This study intends to assess the microbial contamination (fungi and bacteria) in two coffee industries from Brazil with a multi-approach protocol for sampling and for subsequent analyses using four main sources of samples: filtering respiratory protection devices (FRPD) used by workers, settled dust, electrostatic dust cloths (EDC) and coffee beans. The fungal contamination in the assessed industries was also characterized through the molecular detection of toxigenic species and antifungal resistance. Total bacteria contamination presented the highest values in FRPD collected from both industries (7.45 × 104 CFU·m-2; 1.09 × 104 CFU·m-2). Aspergillus genera was widespread in all the environmental samples collected and sections with clinical relevance (Fumigati) and with toxigenic potential (Nigri and Circumdati) were recovered from FRPD. Circumdati section was observed in 4 mg/mL itraconazole. Sections Circumdati (EDC, coffee beans and settled dust) and Nidulantes (EDC, coffee beans and FRPD) were detected by qPCR. Some of the targeted Aspergillus sections that have been identified microscopically were not detected by qPCR and vice-versa. Overall, this study revealed that microbial contamination is a potential occupational risk in the milling stage and should be tackled when assessing exposure and performing risk assessment. In addition, a multi-sampling campaign should be the approach to follow when assessing microbial contamination and FRPD should be included in this campaign. Occupational exposure to mycotoxins should be considered due to high fungal diversity and contamination. A One Health approach should address these issues in order to prevent consumption of coffee crops and beans infected by fungi and, more specifically, to avoid widespread azole resistance.


Asunto(s)
Micotoxinas , Exposición Profesional , Humanos , Itraconazol/análisis , Antifúngicos , Micotoxinas/análisis , Aspergillus , Contaminación de Alimentos/análisis , Polvo , Exposición Profesional/análisis , Inocuidad de los Alimentos , Bacterias , Azoles/análisis
9.
Microorganisms ; 10(8)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-36014012

RESUMEN

Assuring a proper environment for the fulfillment of professional activities is one of the Sustainable Development Goals and is contemplated in the One Health approach assumed by the World Health Organization. This particular study is applied to an often neglected sector of our society-the conservators/restorers-despite the many health issues reported by these professionals. Three different specialties (textiles, paintings and wood sculpture) and locations were selected for evaluation by placement of electrostatic dust cloths. After treatment of the samples, bacterial and fungal contamination were assessed, as well as mycotoxin determination, the presence of azole-resistant strains and cytotoxicity of the microorganisms encountered. Bacteria were only present in one of medias used and showed relatively low numbers. The highest level of contamination by fungi was identified in one of the textiles settings. The textile area also showed the highest variability for fungi. Aspergillus sp. are one indicator of possible environmental issues, and A. sections Fumigati and Circumdati were particularly relevant in two of the settings and identified in all of them. No mycotoxins were detected and the large majority of the fungi identified were non-cytotoxic. Overall, these can be considered low-contaminated environments but attention should be given to the Aspergillus sp. contamination. Additional studies are needed not only to make these results more robust, but also to test if the environmental sampling alone is the best approach in a setting where there is very little movement and dust displacement and where professionals are in very close proximity to the artefacts being treated, which may suggest the existence of a micro-atmosphere worth evaluating and comparing to the obtained results.

10.
Environ Res ; 212(Pt D): 113597, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35660405

RESUMEN

Waste workers are exposed to bioaerosols when handling, lifting and dumping garbage. Bioaerosol exposure has been linked to health problems such as asthma, airway irritant symptoms, infectious, gastrointestinal and skin diseases, and cancer. Our objective was to characterize the exposure of urban collectors and drivers to inhalable bioaerosols and to measured the cytotoxic effect of air samples in order to evaluate their health risk. Personal and ambient air sampling were conducted during the summer of 2019. Workers from 12 waste trucks collecting recyclables, organic waste or compost were evaluated. Bacteria and fungi were cultured, molecular biology methods were used to detect microbial indicators, cytotoxic assays were performed and endotoxins and mycotoxins were quantified. Domestic waste collectors were exposed to concentrations of bacteria and endotoxins above the recommended limits, and Aspergillus section Fumigati was detected at critical concentrations in their breathing zones. Cytotoxic effects were observed in many samples, demonstrating the potential health risk for these workers. This study establishes evidence that waste workers are exposed to microbial health risks during collection. It also demonstrates the relevance of cytotoxic assays in documenting the general toxic risk found in air samples. Our results also suggest that exposures differ depending on the type of waste, job title and discharge/unloading locations.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Microbiología del Aire , Contaminantes Ocupacionales del Aire/análisis , Contaminantes Ocupacionales del Aire/toxicidad , Bacterias , Endotoxinas/análisis , Endotoxinas/toxicidad , Hongos , Humanos , Vehículos a Motor , Exposición Profesional/análisis
11.
Toxins (Basel) ; 14(5)2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35622594

RESUMEN

Cemeteries are potential environmental reservoirs of pathogenic microorganisms from organic matter decomposition. This study aimed to characterize the microbial contamination in three cemeteries, and more specifically in grave diggers' facilities. One active sampling method (impingement method) and several passive sampling methods (swabs, settled dust, settled dust filters and electrostatic dust cloths-EDC) were employed. The molecular detection of Aspergillus sections and SARS-CoV-2, as well as mycotoxin analysis, screening of azole resistance, and cytotoxicity measurement were also conducted. Total bacteria contamination was 80 CFU·m-2 in settled dust samples, reached 849 CFU·m-2 in EDC and 20,000 CFU·m-2 in swabs, and ranged from 5000 to 10,000 CFU·m-2 in filters. Gram-negative bacteria (VRBA) were only observed in in settled dust samples (2.00 × 105 CFU·m-2). Regarding Aspergillus sp., the highest counts were obtained in DG18 (18.38%) and it was not observed in azole-supplemented SDA media. SARS-CoV-2 and the targeted Aspergillus sections were not detected. Mycophenolic acid was detected in one settled dust sample. Cytotoxic effects were observed for 94.4% filters and 5.6% EDC in A549 lung epithelial cells, and for 50.0% filters and 5.6% EDC in HepG2 cells. Future studies are needed in this occupational setting to implement more focused risk management measures.


Asunto(s)
COVID-19 , Microbiota , Aspergillus , Azoles , Cementerios , Polvo/análisis , Portugal , SARS-CoV-2
12.
J Environ Manage ; 314: 115086, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35483278

RESUMEN

Previous studies anticipated that microorganisms and their metabolites in waste will increase as a consequence of a decreased collection frequency and due to differences in what kind of waste is bagged before collection leading to an increased exposure of workers handling the waste. This study aim was to investigate the microbial contamination present in the waste collection trucks (WCT) and in the support facilities (waste collection station - WCS). It was applied a multi-approach protocol using active (air sampling by impingement and impaction) and passive (surface swabs, electrostatic dust cloths and settled dust) sampling methods. The screening of azole-resistance, the investigation of mycotoxins and the assessment of the elicited biological responses in vitro were also carried out aiming recognizing the possible health effects of waste collection drivers. SARS-CoV-2 detection was also performed. In WCS only air samples had contamination in all the four sampling sites (canteen, operational removal core, operational removal center, and administrative service). Among all the analyzed matrices from the WCT a higher percentage of total bacterial counts and Gram-was detected in swabs (66.93%; 99.36%). In WCS the most common species were Penicillium sp. (43.98%) and Cladosporium sp. (24.68%), while on WCT Aspergillus sp. (4.18%) was also one of the most found. In the azole resistance screening Aspergillus genera was not observed in the azole-supplemented media. SARS-CoV-2 was not detected in any of the environmental samples collected, but Aspergillus section Fumigati was detected in 5 samples. Mycotoxins were not detected in EDC from WCS, while in WCT they were detected in filters (N = 1) and in settled dust samples (N = 16). In conclusion, our study reveals that a comprehensive sampling approach using active and passive sampling (e.g. settled dust sampling for a representative mycotoxin evaluation) and combined analytic methods (i.e., culture-based and molecular) is an important asset in microbial exposure assessments. Concerning the waste collection exposure scenario, the results of this study unveiled a complex exposure, particularly to fungi and their metabolites. Aspergillus section Fumigati highlight the significance of targeting this section in the waste management industry as an indicator of occupational health risk.


Asunto(s)
COVID-19 , Micotoxinas , Exposición Profesional , Aspergillus , Azoles , Polvo/análisis , Monitoreo del Ambiente/métodos , Hongos , Humanos , Micotoxinas/análisis , Portugal , SARS-CoV-2
13.
Toxins (Basel) ; 14(2)2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35202098

RESUMEN

Safe working conditions must be guaranteed during waste sorting, which is crucial to maximizing recycling and reuse, in order to minimize workers' exposure to chemical and biological hazards. This study determines the contribution of Aspergillus section Fumigati to the overall cytotoxicity of filtering respiratory protection devices (FRPD) and mechanic protection gloves (MPG) collected in 2019 from different workstations in one waste sorting industry in Portugal. The cytotoxicity of 133 Aspergillus section Fumigati isolates was determined as IC50 in human A549 epithelial lung cells and swine kidney cells, using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Aspergillus section Fumigati cytotoxicity results were compared with previous total cytotoxicity data from FRPD and MPG samples. A significant correlation was detected between the total cytotoxicity of samples and cytotoxicity of Aspergillus section Fumigati isolates in A549 cells (rS = -0.339, p = 0.030). The cytotoxicity of Aspergillus section Fumigati isolates explained 10.7% of the total cytotoxicity of the sample. On the basis of the comparison of cytotoxicity levels, it was possible to determine the contribution of Aspergillus section Fumigati isolates for the total cytotoxicity of protection devices used in the waste sorting industry. The results support in vitro toxicology as a relevant approach in risk assessments regarding cytotoxicity in passive sampling, and thus, useful in determining the contribution of relevant microbial contaminants to overall cytotoxicity. This approach can provide valuable answers in dose/response studies, and support innovations in risk characterization and their translation into occupational policies.


Asunto(s)
Aspergillus/fisiología , Eliminación de Residuos , Dispositivos de Protección Respiratoria/microbiología , Células A549 , Humanos , Exposición Profesional
14.
Toxics ; 10(2)2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35202258

RESUMEN

In some occupational environments risk characterization is challenging or impossible to achieve due to the presence of multiple pollutants and contaminants. Thus, in vitro testing using the most relevant cell lines will provide information concerning health effects due to the co-exposure to multiple stressors. The aim of this review article is to identify studies where the cytotoxicity assessment was performed in environmental samples, as well as to describe the main outputs and challenges regarding risk characterization and management. This study is based on a study of the available information/data on cytotoxicity assessment performed on environmental samples following the PRISMA methodology. Different cell lines were used depending on the environment assessed and exposure routes implicated. The A549 alveolar epithelial cell line was applied in four studies for occupational exposure in the waste sorting industry and for outdoor environments; lymphocytes were used in two studies for occupational and outdoor environments; swine kidney cells were used in three studies performed in the waste industry and hepatocellular/Hep G2 in one study in the waste industry. Cytotoxicity assessments in environmental samples should have a more prominent role due to their contribution for identifying and better understanding the associations between co-exposure to environmental contaminants and adverse human health effects as a prioritization for risk management.

15.
Int J Environ Health Res ; 32(5): 963-971, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-32814444

RESUMEN

Association between selection pressure caused by the use of azole fungicides in sawmills and the development of fungal resistance has been described. The aim of this study was to implement an algorithm to assess the presence of Aspergillus section Fumigati resistant strains in sawmills.Eighty-six full-shift inhalable dust samples were collected from eleven industrial sawmills in Norway. Different culture media were used and molecular identification to species level in Aspergillus section Fumigati was done by calmodulin sequencing and TR34/L98H and TR46/Y121F/T289A mutations were screened by real-time PCR assay and confirmed by cyp51A sequencing. Six Fumigati isolates were identified as A. fumigatus sensu stricto and two of these grew on azole-supplemented media and were further analyzed by real-time PCR. One was confirmed to be a TR34/L98H mutant.The obtained results reinforce the need to assess the presence of A. fumigatus sensu stricto resistant isolates at other workplaces with fungicide pressure.


Asunto(s)
Aspergillus fumigatus , Azoles , Algoritmos , Antifúngicos/farmacología , Aspergillus fumigatus/genética , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Pruebas de Sensibilidad Microbiana
16.
J Fungi (Basel) ; 7(10)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34682260

RESUMEN

This study analyzed 57 Aspergillus section Fumigati (AF) isolates collected by active and passive sampling (N = 450) in several health care facilities and from biological sampling of health care workers (N = 25) and controls (N = 22) in Portugal. All isolates were cultured in different media and screened for azole resistance. Cytotoxicity was assessed for 40 isolates in lung epithelial cells and kidney cells using the MTT assay. Aspergillus section Fumigati was prevalent in the health care facilities and in nasal swabs from health care workers and controls. All AF isolates reduced cell viability and presented medium to high cytotoxicity, with cytotoxicity being significantly higher in A549 lung epithelial cells. The cytotoxicity of isolates from air and nasal swab samples suggested the inhalation route as a risk factor. Notably, 42% of AF isolates exhibited a pattern of reduced susceptibility to some of the most used antifungals available for the treatment of patients infected with these fungi. In sum, the epidemiology and clinical relevance of Aspergillus section Fumigati should continue to be addressed. A deeper understanding of the mechanisms underlying Aspergillus-mediated cytotoxicity is necessary.

17.
Microorganisms ; 9(10)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34683433

RESUMEN

BACKGROUND: Aspergillus section Fumigati is one of the Aspergillus sections more frequently related to respiratory symptoms and by other health outcomes. This study aimed to characterize Aspergillus section Fumigati distribution in eleven firefighter headquarters (FFHs) to obtain an accurate occupational exposure assessment. METHODS: A sampling approach protocol was performed using active (impaction method) and passive sampling methods (floor surfaces swabs, electrostatic dust collectors (EDCs), and settled dust). All samples were analysed by culture-based methods and passive sampling was used for molecular detection of Aspergillus section Fumigati. Results: Of all the matrices, the highest counts of Aspergillus sp. were obtained on settled dust filters (3.37% malt extract agar-MEA, 19.09% dichloran glycerol-DG18) followed by cleaning cloths (1.67% MEA; 7.07% DG18). Among the Aspergillus genus, the Fumigati section was predominant in Millipore and EDC samples in MEA (79.77% and 28.57%, respectively), and in swabs and settled dust filters in DG18 (44.76% and 30%, respectively). The Fumigati section was detected more frequently in DG18 (33.01%) compared to MEA (0.33%). The Fumigati section was observed in azole supplemented media (itraconazole and voriconazole) in several passive sampling methods employed and detected by qPCR in almost all passive samples, with EDCs being the matrix with the highest prevalence (n = 61; 67.8%). CONCLUSION: This study confirms that Aspergillus sp. is widespread and the Fumigati section is present in all FFHs. The presence of fungi potentially resistant to azoles in the FFHs was also observed. Further studies are needed to identify the best corrective and preventive measures to avoid this section contamination in this specific occupational environment.

18.
Environ Int ; 155: 106603, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33940392

RESUMEN

Filtering respiratory protection devices (FRPD) are mandatory for workers to wear in the Portuguese waste-sorting industry. Previous results regarding microbial contamination found on FRPD interior layer raised the question of whether microbial contamination from the exhalation valve would also have cytotoxicity effects. Since the FRPD exhalation valves are very close to workers' nose and mouth, they represent a source of exposure to bioburden by inhalation. This study aimed to evaluate the cytotoxicity of the microbial contamination present in the FRPD exhalation valves. For this purpose, the cytotoxicity effects were determined through the MTT assay in two different cell lines (human A549 epithelial lung cells, and swine kidney cells) and compared with previous results obtained with FRPD interior layers. The contamination present in the FRPD exhalation valves presented some cytotoxicity on epithelial lung cells, suggesting the inhalation route as a potential route of exposure through the use of FRPD in the waste-sorting industry. Half-maximal (50%) inhibitory concentration (IC50) values were lower for FRPD interior layer than exhalation valves in lung cells, with overall cytotoxicity lower in exhalation valves when compared to interior layer (z = -4.455, p = 0.000). Higher bacterial counts in TSA were correlated with lower IC50 values, thus, higher cytotoxicity effect in lung cells. No statistically significant differences were detected among different workplaces.


Asunto(s)
Espiración , Dispositivos de Protección Respiratoria , Animales , Humanos , Industrias , Porcinos
19.
Environ Res ; 197: 111125, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33895113

RESUMEN

Ambulance vehicles are an essential part of emergency clinical services. Bioburden control in ambulances, through cleaning and disinfection, is crucial to minimize hospital-acquired infections, cross contamination and exposure of patients and ambulances' crew. In Portugal, firefighter crews are responsible, besides fire extinction, for first aid and urgent pre-hospital treatment. This study assessed the bioburden in Portuguese firefighters' ambulances with a multi-approach protocol using active and passive sampling methods. Fungal resistance profile and mycotoxins detection in ambulances' ambient, and S. aureus (SA) prevalence and resistance profile in ambulances' ambient and colonization in workers were also investigated. Toxigenic fungi with clinical relevance, namely Aspergillus section Fumigati, were found on ambulance's air in the hazardous dimension range. Interestingly, surface contamination was higher after cleaning in several sampling sites. Prevalence of S. aureus was 3% in environmental samples, of which 2% were methicillin-sensitive (MSSA) and 1% methicillin-resistant (MRSA). About 2.07 fungal species were able to grow in at least one azole, ranging from one (44% samples) to five (6% samples) species in each azole. Mycotoxins were detected in mops and electrostatic dust cloths. Colonization by S. aureus in the firefighter crew was observed with a high associated prevalence, namely 48%, with a 24% prevalence of MSSA (8/33) and 21% of MRSA (7/33). Additional studies are needed to determine the potential risk of infection transmission between different vehicle fleets and under varying conditions of use. This will strengthen the paramedic sector's mission to save lives without putting their own health and safety at risk.


Asunto(s)
Bomberos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Ambulancias , Humanos , Portugal/epidemiología , Staphylococcus aureus
20.
Environ Pollut ; 273: 116417, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33465652

RESUMEN

A wider characterization of indoor air quality during sleep is still lacking in the literature. This study intends to assess bioburden before and after sleeping periods in Portuguese dwellings through active methods (air sampling) coupled with passive methods, such as electrostatic dust cloths (EDC); and investigate associations between before and after sleeping and bioburden. In addition, and driven by the lack of information regarding fungi azole-resistance in Portuguese dwellings, a screening with supplemented media was also performed. The most prevalent genera of airborne bacteria identified in the indoor air of the bedrooms were Micrococcus (41%), Staphylococcus (15%) and Neisseria (9%). The major indoor bacterial species isolated in all ten studied bedrooms were Micrococcus luteus (30%), Staphylococcus aureus (13%) and Micrococcus varians (11%). Our results highlight that our bodies are the source of the majority of the bacteria found in the indoor air of our homes. Regarding air fungal contamination, Chrysosporium spp. presented the highest prevalence both in after the sleeping period (40.8%) and before the sleeping period (28.8%) followed by Penicillium spp. (23.47% morning; 23.6% night) and Chrysonilia spp. (12.4% morning; 20.3% night). Several Aspergillus sections were identified in air and EDC samples. However, none of the fungal species/strains (Aspergillus sections Fumigati, Flavi, Nidulantes and Circumdati) were amplified by qPCR in the analyzed EDC. The correlations observed suggest reduced susceptibility to antifungal drugs of some fungal species found in sleeping environments. Toxigenic fungal species and indicators of harmful fungal contamination were observed in sleeping environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...