Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Oncol (Dordr) ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080215

RESUMEN

BACKGROUND: Liver cancer stem cells (CSCs) contribute to tumor initiation, progression, and recurrence in hepatocellular carcinoma (HCC). The Wnt/ß-catenin pathway plays a crucial role in liver cancer stemness, progression, metastasis, and drug resistance, but no clinically approved drugs have targeted this pathway efficiently so far. We aimed to elucidate the role of COLEC10 in HCC stemness. METHODS: The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases were employed to search for the association between COLEC10 expression and HCC stemness. Colony formation, sphere formation, side population, and limiting dilution tumor initiation assays were used to identify the regulatory role of COLEC10 overexpression in the stemness of HCC cell lines. Wnt/ß-catenin reporter assay and immunoprecipitation were performed to explore the underlying mechanism. RESULTS: COLEC10 level was negatively correlated with HCC stemness. Elevated COLEC10 led to decreased expressions of EpCAM and AFP (alpha-fetoprotein), two common markers of liver CSCs. Overexpression of COLEC10 inhibited HCC cells from forming colonies and spheres, and reduced the side population numbers in vitro, as well as the tumorigenic capacity in vivo. Mechanically, we demonstrated that overexpression of COLEC10 suppressed the activity of Wnt/ß-catenin signaling by upregulating Wnt inhibitory factor WIF1 and reducing the level of cytoplasmic ß-catenin. COLEC10 overexpression promoted the interaction of ß-catenin with the component of destruction complex CK1α. In addition, KLHL22 (Kelch Like Family Member 22), a reported E3 ligase adaptor predicted to interact with CK1α, could facilitate COLEC10 monoubiquitination and degradation. CONCLUSION: COLEC10 inhibits HCC stemness by downregulating the Wnt/ß-catenin pathway, which is a promising target for liver CSC therapy.

2.
Lab Invest ; 103(7): 100130, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36925047

RESUMEN

Collectin subfamily member 10 (COLEC10), a C-type lectin mainly expressed in the liver, is involved in the development of hepatocellular carcinoma (HCC). However, its underlying molecular mechanism in HCC progression remains unknown. In this study, reduced COLEC10 expression in tumor tissues was validated using various HCC cohorts and was associated with poor patient prognosis. COLEC10 overexpression attenuated HCC cell growth and migration abilities in vitro and in vivo. We identified that COLEC10 was a novel interactor of 78-kDa glucose-regulated protein (GRP78), a master modulator of the unfolded protein response in the endoplasmic reticulum (ER). COLEC10 overexpression potentiated ER stress in HCC cells, as demonstrated by elevated expression levels of phosphorylated protein kinase RNA-like ER kinase, phosphorylated inositol-requiring protein 1α, activating transcription factor 4, DNA damage-inducible transcript 3, and X-box-binding protein 1s. The ER in COLEC10-overexpressing cells also showed a dilated and fragmented pattern. Mechanistically, COLEC10 overexpression increases GRP78 occupancy through direct binding by the C-terminal carbohydrate recognition domain in the ER, which released and activated the ER stress transducers protein kinase RNA-like ER kinase and phosphorylated inositol-requiring protein 1α, triggering the unfolded protein response activity. COLEC10-overexpressing HCC cells generated a relatively high reactive oxygen species level and switched to apoptotic cell death under sorafenib-treated conditions. Our study provides the first novel view that COLEC10 inhibits HCC progression by regulating GRP78-mediated ER stress signaling and may serve as a promising therapeutic and prognostic biomarker.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Chaperón BiP del Retículo Endoplásmico , Neoplasias Hepáticas/metabolismo , Estrés del Retículo Endoplásmico , Apoptosis , ARN , Proteínas Quinasas , Colectinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA