Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Med Biol ; 63(22): 225014, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30418935

RESUMEN

The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) provides a benefit for diagnostic imaging. Still, attenuation correction (AC) is a challenge in PET/MRI compared to stand-alone PET and PET-computed tomography (PET/CT). In the absence of photonic transmission sources, AC in PET/MRI is usually based on retrospective segmentation of MR images or complex additional MR-sequences. However, most methods available today are still challenged by either the incorporation of cortical bone or substantial anatomical variations of subjects. This leads to a bias in quantification of tracer concentration in PET. Therefore, we have developed a fully integrated transmission source system for PET/MRI of the head to enable direct measurement of attenuation coefficients using external positron emitters, which is the reference standard in AC. Based on a setup called the 'liquid drive' presented by Jones et al (1995) two decades ago, we built a head coil system consisting of an MR-compatible hydraulic system driving a point source on a helical path around a 24-channel MR-receiver coil to perform a transmission scan. Sinogram windowing of the moving source allows for post-injection measurements. The prototype was tested in the Siemens Biograph mMR using a homogeneous water phantom and a phantom with air cavities and a Teflon (PTFE) cylinder. The second phantom was measured both with and without emission activity. For both measurements air, water and Teflon were clearly distinguishable and homogeneous regions of the phantom were successfully reproduced in the AC map. For water the linear attenuation coefficient was measured as (0.096 ± 0.005) cm-1 in accordance with the true physical value. This combined MR head coil and transmission source system is, to our knowledge, the first working example to use an orbiting point source in PET/MRI and may be helpful in providing fully-quantitative PET data in neuro-PET/MRI.


Asunto(s)
Cabeza/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Humanos , Imagen Multimodal/métodos , Fantasmas de Imagen
2.
Phys Med Biol ; 63(1): 015005, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29240557

RESUMEN

Recent studies have suggested that 18F-NaF-PET enables visualization and quantification of plaque micro-calcification in the coronary tree. However, PET imaging of plaque calcification in the coronary arteries is challenging because of the respiratory and cardiac motion as well as partial volume effects. The objective of this work is to implement an image reconstruction framework, which incorporates compensation for respiratory as well as cardiac motion (MoCo) and partial volume correction (PVC), for cardiac 18F-NaF PET imaging in PET/CT. We evaluated the effect of MoCo and PVC on the quantification of vulnerable plaques in the coronary arteries. Realistic simulations (Biograph TPTV, Biograph mCT) and phantom acquisitions (Biograph mCT) were used for these evaluations. Different uptake values in the calcified plaques were evaluated in the simulations, while three 'plaque-type' lesions of 36, 31 and 18 mm3 were included in the phantom experiments. After validation, the MoCo and PVC methods were applied in four pilot NaF-PET patient studies. In all cases, the MoCo-based image reconstruction was performed using the STIR software. The PVC was obtained from a local projection (LP) method, previously evaluated in preclinical and clinical PET. The results obtained show a significant increase of the measured lesion-to-background ratios (LBR) in the MoCo + PVC images. These ratios were further enhanced when using directly the tissue-activities from the LP method, making this approach more suitable for the quantitative evaluation of coronary plaques. When using the LP method on the MoCo images, LBR increased between 200% and 1119% in the simulated data, between 212% and 614% in the phantom experiments and between 46% and 373% in the plaques with positive uptake observed in the pilot patients. In conclusion, we have built and validated a STIR framework incorporating MoCo and PVC for 18F-NaF PET imaging of coronary plaques. First results indicate an improved quantification of plaque-type lesions.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Infarto del Miocardio/patología , Fantasmas de Imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radioisótopos de Flúor , Humanos , Movimiento , Infarto del Miocardio/diagnóstico por imagen , Fluoruro de Sodio
3.
Appl Radiat Isot ; 120: 71-75, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27918919

RESUMEN

CeBr3 crystals meet many of the demands of high performance scintillators, due to their excellent timing properties, good effective Z and high photon yield. It is important to characterize their efficiency and to verify whether modern Monte Carlo codes are reliable enough to reproduced the observed values. We report here on the measurement of both total and photopeak efficiency of a 1" diameter×1" height CeBr3 crystal for gamma-ray energies up to 1.4MeV at several distances, using a variety of low energy gamma rays sources. The measured experimental efficiencies are compared with simulations developed in the framework of PENELOPE and GEANT4.

4.
Phys Med Biol ; 60(18): 7127-49, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26334312

RESUMEN

In Positron Emission Tomography, there are several causes of quantitative inaccuracy, such as partial volume or spillover effects. The impact of these effects is greater when using radionuclides that have a large positron range, e.g. (68)Ga and (124)I, which have been increasingly used in the clinic. We have implemented and evaluated a local projection algorithm (LPA), originally evaluated for SPECT, to compensate for both partial-volume and spillover effects in PET. This method is based on the use of a high-resolution CT or MR image, co-registered with a PET image, which permits a high-resolution segmentation of a few tissues within a volume of interest (VOI) centered on a region within which tissue-activity values need to be estimated. The additional boundary information is used to obtain improved activity estimates for each tissue within the VOI, by solving a simple inversion problem. We implemented this algorithm for the preclinical Argus PET/CT scanner and assessed its performance using the radionuclides (18)F, (68)Ga and (124)I. We also evaluated and compared the results obtained when it was applied during the iterative reconstruction, as well as after the reconstruction as a postprocessing procedure. In addition, we studied how LPA can help to reduce the 'spillover contamination', which causes inaccurate quantification of lesions in the immediate neighborhood of large, 'hot' sources. Quantification was significantly improved by using LPA, which provided more accurate ratios of lesion-to-background activity concentration for hot and cold regions. For (18)F, the contrast was improved from 3.0 to 4.0 in hot lesions (when the true ratio was 4.0) and from 0.16 to 0.06 in cold lesions (true ratio = 0.0), when using the LPA postprocessing. Furthermore, activity values estimated within the VOI using LPA during reconstruction were slightly more accurate than those obtained by post-processing, while also visually improving the image contrast and uniformity within the VOI.


Asunto(s)
Algoritmos , Radioisótopos de Galio/farmacocinética , Radioisótopos de Yodo/farmacocinética , Fantasmas de Imagen , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Distribución Tisular
5.
Phys Med Biol ; 60(1): 375-401, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25503853

RESUMEN

A procedure to characterize beams of a medical linear accelerator for their use in Monte Carlo (MC) dose calculations for intraoperative electron radiation therapy (IOERT) is presented. The procedure relies on dose measurements in homogeneous media as input, avoiding the need for detailed simulations of the accelerator head. An iterative algorithm (EM-ML) has been employed to extract the relevant details of the phase space (PHSP) of the particles coming from the accelerator, such as energy spectra, spatial distribution and angle of emission of particles. The algorithm can use pre-computed dose volumes in water and/or air, so that the machine-specific tuning with actual data can be performed in a few minutes. To test the procedure, MC simulations of a linear accelerator with typical IOERT applicators and energies, have been performed and taken as reference. A solution PHSP derived from the dose produced by the simulated accelerator has been compared to the reference PHSP. Further, dose delivered by the simulated accelerator for setups not included in the fit of the PHSP were compared to the ones derived from the solution PHSP. The results show that it is possible to derive from dose measurements PHSP accurate for IOERT MC dose estimations.


Asunto(s)
Algoritmos , Huesos/efectos de la radiación , Electrones/uso terapéutico , Cuidados Intraoperatorios , Pulmón/efectos de la radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Simulación por Computador , Estudios de Factibilidad , Humanos , Método de Montecarlo , Aceleradores de Partículas , Fantasmas de Imagen , Dosificación Radioterapéutica
6.
Phys Med Biol ; 60(1): 117-36, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25479147

RESUMEN

Although current PET scanners are designed and optimized to detect double coincidence events, there is a significant amount of triple coincidences in any PET acquisition. Triple coincidences may arise from causes such as: inter-detector scatter (IDS), random triple interactions (RT), or the detection of prompt gamma rays in coincidence with annihilation photons when non-pure positron-emitting radionuclides are used (ß(+)γ events). Depending on the data acquisition settings of the PET scanner, these triple events are discarded or processed as a set of double coincidences if the energy of the three detected events is within the scanner's energy window. This latter option introduces noise in the data, as at most, only one of the possible lines-of-response defined by triple interactions corresponds to the line along which the decay occurred. Several novel works have pointed out the possibility of using triple events to increase the sensitivity of PET scanners or to expand PET imaging capabilities by allowing differentiation between radiotracers labeled with non-pure and pure positron-emitting radionuclides. In this work, we extended the Monte Carlo simulator PeneloPET to assess the proportion of triple coincidences in PET acquisitions and to evaluate their possible applications. We validated the results of the simulator against experimental data acquired with a modified version of a commercial preclinical PET/CT scanner, which was enabled to acquire and process triple-coincidence events. We used as figures of merit the energy spectra for double and triple coincidences and the triples-to-doubles ratio for different energy windows and radionuclides. After validation, the simulator was used to predict the relative quantity of triple-coincidence events in two clinical scanners assuming different acquisition settings. Good agreement between simulations and preclinical experiments was found, with differences below 10% for most of the observables considered. For clinical scanners and pure positron emitters, we found that around 10% of the processed double events come from triple coincidences, increasing this ratio substantially for non-pure emitters (around 25% for (124)I and > 50% for (86)Y). For radiotracers labeled with (18)F we found that the relative quantity of IDS events in standard acquisitions is around 18% for the preclinical scanner and between 14 and 22% for the clinical scanners. For non-pure positron emitters like (124)I, we found a ß(+)γ triples-to-doubles ratio of 2.5% in the preclinical scanner and of up to 4% in the clinical scanners.


Asunto(s)
Simulación por Computador , Rayos gamma , Fantasmas de Imagen , Fotones , Tomografía de Emisión de Positrones/métodos , Animales , Partículas beta , Humanos , Radioisótopos de Yodo , Ratones , Método de Montecarlo , Tomógrafos Computarizados por Rayos X
7.
Phys Med Biol ; 58(15): 5127-52, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23835700

RESUMEN

Technical advances towards high resolution PET imaging try to overcome the inherent physical limitations to spatial resolution. Positrons travel in tissue until they annihilate into the two gamma photons detected. This range is the main detector-independent contribution to PET imaging blurring. To a large extent, it can be remedied during image reconstruction if accurate estimates of positron range are available. However, the existing estimates differ, and the comparison with the scarce experimental data available is not conclusive. In this work we present positron annihilation distributions obtained from Monte Carlo simulations with the PeneloPET simulation toolkit, for several common PET isotopes ((18)F, (11)C, (13)N, (15)O, (68)Ga and (82)Rb) in different biological media (cortical bone, soft bone, skin, muscle striated, brain, water, adipose tissue and lung). We compare PeneloPET simulations against experimental data and other simulation results available in the literature. To this end the different positron range representations employed in the literature are related to each other by means of a new parameterization for positron range profiles. Our results are generally consistent with experiments and with most simulations previously reported with differences of less than 20% in the mean and maximum range values. From these results, we conclude that better experimental measurements are needed, especially to disentangle the effect of positronium formation in positron range. Finally, with the aid of PeneloPET, we confirm that scaling approaches can be used to obtain universal, material and isotope independent, positron range profiles, which would considerably simplify range correction.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Tomografía de Emisión de Positrones/métodos , Humanos , Método de Montecarlo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...