Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 126(8): 083603, 2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33709745

RESUMEN

We demonstrate a source for correlated pairs of atoms characterized by two opposite momenta and two spatial modes forming a Bell state only involving external degrees of freedom. We characterize the state of the emitted atom beams by observing strong number squeezing up to -10 dB in the correlated two-particle modes of emission. We furthermore demonstrate genuine two-particle interference in the normalized second-order correlation function g^{(2)} relative to the emitted atoms.

2.
Science ; 365(6453): 570-574, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31395778

RESUMEN

Quantum entanglement involving coherent superpositions of macroscopically distinct states is among the most striking features of quantum theory, but its realization is challenging because such states are extremely fragile. Using a programmable quantum simulator based on neutral atom arrays with interactions mediated by Rydberg states, we demonstrate the creation of "Schrödinger cat" states of the Greenberger-Horne-Zeilinger (GHZ) type with up to 20 qubits. Our approach is based on engineering the energy spectrum and using optimal control of the many-body system. We further demonstrate entanglement manipulation by using GHZ states to distribute entanglement to distant sites in the array, establishing important ingredients for quantum information processing and quantum metrology.

3.
Sci Rep ; 6: 34187, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27725688

RESUMEN

Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit - the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.

4.
Phys Rev Lett ; 116(23): 237201, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27341253

RESUMEN

Open quantum many-body systems play an important role in quantum optics and condensed matter physics, and capture phenomena like transport, the interplay between Hamiltonian and incoherent dynamics, and topological order generated by dissipation. We introduce a versatile and practical method to numerically simulate one-dimensional open quantum many-body dynamics using tensor networks. It is based on representing mixed quantum states in a locally purified form, which guarantees that positivity is preserved at all times. Moreover, the approximation error is controlled with respect to the trace norm. Hence, this scheme overcomes various obstacles of the known numerical open-system evolution schemes. To exemplify the functioning of the approach, we study both stationary states and transient dissipative behavior, for various open quantum systems ranging from few to many bodies.

5.
Nat Commun ; 5: 4009, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24874019

RESUMEN

The Ramsey interferometer is a prime example of precise control at the quantum level. It is usually implemented using internal states of atoms, molecules or ions, for which powerful manipulation procedures are now available. Whether it is possible to control external degrees of freedom of more complex, interacting many-body systems at this level remained an open question. Here we demonstrate a two-pulse Ramsey-type interferometer for non-classical motional states of a Bose-Einstein condensate in an anharmonic trap. The control sequences used to manipulate the condensate wavefunction are obtained from optimal control theory and are directly optimized to maximize the interferometric contrast. They permit a fast manipulation of the atomic ensemble compared to the intrinsic decay processes and many-body dephasing effects. This allows us to reach an interferometric contrast of 92% in the experimental implementation.

6.
Phys Rev Lett ; 111(8): 080501, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-24010420

RESUMEN

We propose and theoretically investigate a hybrid system composed of a crystal of trapped ions coupled to a cloud of ultracold fermions. The ions form a periodic lattice and induce a band structure in the atoms. This system combines the advantages of high fidelity operations and detection offered by trapped ion systems with ultracold atomic systems. It also features close analogies to natural solid-state systems, as the atomic degrees of freedom couple to phonons of the ion lattice, thereby emulating a solid-state system. Starting from the microscopic many-body Hamiltonian, we derive the low energy Hamiltonian, including the atomic band structure, and give an expression for the atom-phonon coupling. We discuss possible experimental implementations such as a Peierls-like transition into a period-doubled dimerized state.

7.
Phys Rev Lett ; 109(8): 080402, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-23002726

RESUMEN

We theoretically investigate the properties of a double-well bosonic Josephson junction coupled to a single trapped ion. We find that the coupling between the wells can be controlled by the internal state of the ion, which can be used for studying mesoscopic entanglement between the two systems and to measure their interaction with high precision. As a particular example we consider a single ^{87}Rb atom and a small Bose-Einstein condensate controlled by a single 171Yb+ ion. We calculate interwell coupling rates reaching hundreds of Hz, while the state dependence amounts to tens of Hz for plausible values of the currently unknown s-wave scattering length between the atom and the ion. The analysis shows that it is possible to induce either the self-trapping or the tunneling regime, depending on the internal state of the ion. This enables the generation of large scale ion-atomic wave packet entanglement within current technology.

8.
Phys Rev Lett ; 107(13): 130404, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-22026832

RESUMEN

We investigate the optimal control of open quantum systems, in particular, the mutual influence of driving and dissipation. A stochastic approach to open-system control is developed, using a generalized version of Krotov's iterative algorithm, with no need for Markovian or rotating-wave approximations. The application to a harmonic degree of freedom reveals cooperative effects of driving and dissipation that a standard Markovian treatment cannot capture. Remarkably, control can modify the open-system dynamics to the point where the entropy change turns negative, thus achieving cooling of translational motion without any reliance on internal degrees of freedom.

9.
Phys Rev Lett ; 103(24): 240501, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-20366188

RESUMEN

Optimal control theory is a promising candidate for a drastic improvement of the performance of quantum information tasks. We explore its ultimate limit in paradigmatic cases, and demonstrate that it coincides with the maximum speed limit allowed by quantum evolution.

10.
Phys Rev Lett ; 93(11): 110401, 2004 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-15447321

RESUMEN

We show that fermionic atoms have crucial advantages over bosonic atoms in terms of loading in optical lattices for use as a possible quantum computation device. After analyzing the change in the level structure of a nonuniform confining potential as a periodic potential is superimposed to it, we show how this structure combined with the Pauli principle and fermion degeneracy can be exploited to create unit occupancy of the lattice sites with very high efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...