Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Res ; 1462: 151-61, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22513101

RESUMEN

Fragile X syndrome (FXS) is the most common form of inherited mental disability and known cause of autism. It is caused by loss of function for the RNA binding protein FMRP, which has been demonstrated to regulate several aspects of RNA metabolism including transport, stability and translation at synapses. Recently, FMRP has been implicated in neural stem cell proliferation and differentiation both in cultured neurospheres as well as in vivo mouse and fly models of FXS. We have previously shown that FMRP deficient Drosophila neuroblasts upregulate Cyclin E, prematurely exit quiescence, and overproliferate to generate on average 16% more neurons. Here we further investigate FMRP's role during early development using the Drosophila larval brain as a model. Using tissue specific RNAi we find that FMRP is required sequentially, first in neuroblasts and then in glia, to regulate exit from quiescence as measured by Cyclin E expression in the brain. Furthermore, we tested the hypothesis that FMRP controls brain development by regulating the insulin signaling pathway, which has been recently shown to regulate neuroblast exit from quiescence. Our data indicate that phosphoAkt, a readout of insulin signaling, is upregulated in dFmr1 brains at the time when FMRP is required in glia for neuroblast reactivation. In addition, dFmr1 interacts genetically with dFoxO, a transcriptional regulator of insulin signaling. Our results provide the first evidence that FMRP is required in vivo, in glia for neuroblast reactivation and suggest that it may do so by regulating the output of the insulin signaling pathway. This article is part of a Special Issue entitled: RNA-Binding Proteins.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Insulina/fisiología , Células-Madre Neurales/fisiología , Neuroglía/fisiología , Transducción de Señal/fisiología , Animales , Encéfalo/fisiopatología , Ciclo Celular/genética , Ciclo Celular/fisiología , Linaje de la Célula , Proliferación Celular , Ciclina E/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteínas Fluorescentes Verdes/metabolismo , Mutación/genética , Mutación/fisiología , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Proteínas Proto-Oncogénicas c-akt/genética , Interferencia de ARN , Fase S/fisiología , Regulación hacia Arriba/genética , Regulación hacia Arriba/fisiología
2.
Genesis ; 49(6): 424-40, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21404421

RESUMEN

Fragile X syndrome (FXS) is the most common form of inherited mental retardation and is caused by the loss of function for Fragile X Mental Retardation Protein (FMRP), a selective RNA-binding protein with a demonstrated role in the localized translation of target mRNAs at synapses. Several recent studies provide compelling evidence for a new role of FMRP in the development of the nervous system, during neurogenesis. Using a multi-faceted approach and a variety of model systems ranging from cultured neurospheres and progenitor cells to in vivo Drosophila and mouse models these reports indicate that FMRP is required for neural stem and progenitor cell proliferation, differentiation, survival, as well as regulation of gene expression. Here we compare and contrast these recent reports and discuss the implications of FMRP's new role in embryonic and adult neurogenesis, including the development of novel therapeutic approaches to FXS and related neurological disorders such as autism.


Asunto(s)
Diferenciación Celular/fisiología , Supervivencia Celular/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Regulación de la Expresión Génica/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , ARN Mensajero/metabolismo , Animales , Proliferación Celular , Drosophila , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Ratones , Células-Madre Neurales/metabolismo , Neurogénesis/genética
3.
Hum Mol Genet ; 19(15): 3068-79, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20504994

RESUMEN

Fragile X syndrome (FXS) is the most common form of inherited mental retardation and is caused by the loss of function for Fragile X protein (FMRP), an RNA-binding protein thought to regulate synaptic plasticity by controlling the localization and translation of specific mRNAs. We have recently shown that FMRP is required to control the proliferation of the germline in Drosophila. To determine whether FMRP is also required for proliferation during brain development, we examined the distribution of cell cycle markers in dFmr1 brains compared with wild-type throughout larval development. Our results indicate that the loss of dFmr1 leads to a significant increase in the number of mitotic neuroblasts (NB) and BrdU incorporation in the brain, consistent with the notion that FMRP controls proliferation during neurogenesis. Developmental studies suggest that FMRP also inhibits neuroblast exit from quiescence in early larval brains, as indicated by misexpression of Cyclin E. Live imaging experiments indicate that by the third instar larval stage, the length of the cell cycle is unaffected, although more cells are found in S and G2/M in dFmr1 brains compared with wild-type. To determine the role of FMRP in neuroblast division and differentiation, we used Mosaic Analysis with a Repressible Marker (MARCM) approaches in the developing larval brain and found that single dFmr1 NB generate significantly more neurons than controls. Our results demonstrate that FMRP is required during brain development to control the exit from quiescence and proliferative capacity of NB as well as neuron production, which may provide insights into the autistic component of FXS.


Asunto(s)
Encéfalo/citología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Neuronas/citología , Células Madre/citología , Animales , Encéfalo/metabolismo , Ciclo Celular , Linaje de la Célula , Proliferación Celular , Supervivencia Celular , Células Clonales , Ciclina E/metabolismo , Drosophila melanogaster/metabolismo , Larva/citología , Modelos Biológicos , Mutación/genética , Neuronas/metabolismo , Células Madre/metabolismo
4.
Radiat Res ; 172(2): 213-9, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19630525

RESUMEN

Abstract Estimates of cancer risks posed to space-flight crews by exposure to high atomic number, high-energy (HZE) ions are subject to considerable uncertainty because epidemiological data do not exist for human populations exposed to similar radiation qualities. We assessed the leukemogenic efficacy of one such HZE species, 1 GeV (56)Fe ions, a component of space radiation, in a mouse model for radiation-induced acute myeloid leukemia. CBA/CaJ mice were irradiated with 1 GeV/nucleon (56)Fe ions or (137)Cs gamma rays and followed until they were moribund or to 800 days of age. We found that 1 GeV/nucleon (56)Fe ions do not appear to be substantially more effective than gamma rays for the induction of acute myeloid leukemia (AML). However, (56)Fe-ion-irradiated mice had a much higher incidence of hepatocellular carcinoma (HCC) than gamma-irradiated mice, with an estimated RBE of approximately 50. These data suggest a difference in the effects of HZE iron ions on the induction of leukemia compared to solid tumors, suggesting potentially different mechanisms of tumorigenesis.


Asunto(s)
Carcinoma Hepatocelular/epidemiología , Carcinoma Hepatocelular/veterinaria , Leucemia Mieloide/epidemiología , Leucemia Mieloide/veterinaria , Neoplasias Hepáticas/epidemiología , Neoplasias Hepáticas/veterinaria , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/veterinaria , Animales , Radiación Cósmica , Relación Dosis-Respuesta en la Radiación , Iones Pesados , Incidencia , Hierro , Masculino , Ratones , Dosis de Radiación , Medición de Riesgo/métodos , Factores de Riesgo , Irradiación Corporal Total/estadística & datos numéricos
5.
Radiat Res ; 171(4): 474-83, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19397448

RESUMEN

Since deletion of the PU.1 gene on chromosome 2 is a crucial acute myeloid leukemia (AML) initiating step in the mouse model, we quantified PU.1 deleted cells in the bone marrow of gamma-, X- and 56Fe-ion-irradiated mice at various times postirradiation. Although 56Fe ions were initially some two to three times more effective than X or gamma rays in inducing PU.1 deletions, by 1 month postirradiation, the proportions of cells with PU.1 deletions were similar for the HZE particles and the sparsely ionizing radiations. These results indicate that while 56Fe ions are more effective in inducing PU.1 deletions, they are also more effective in causing collateral damage that removes hit cells from the bone marrow. After X, gamma or 56Fe-ion irradiation, AML-resistant C57BL/6 mice have fewer cells with PU.1 deletions than CBA mice, and those cells do not persist in the bone marrow of the C57B6/6 mice. Our findings suggest that quantification of PU.1 deleted bone marrow cells 1 month postirradiation can be used as surrogate for the incidence of radiation-induced AML measured in large-scale mouse studies. If so, PU.1 loss could be used to systematically assess the potential leukemogenic effects of other ions and energies in the space radiation environment.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Hierro , Leucemia/etiología , Leucemia/metabolismo , Neoplasias Inducidas por Radiación/etiología , Neoplasias Inducidas por Radiación/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Animales , Cromosomas , Cromosomas Artificiales Bacterianos/metabolismo , Relación Dosis-Respuesta en la Radiación , Rayos gamma , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...