RESUMEN
Photoluminescence quantum yields denote a critical variable to characterise a fluorophore and its potential performance. Their determination, by means of methodologies employing reference standard materials, inevitably leads to large uncertainties. In response to this, herein we report for the first time an innovative and elegant methodology, whereby the use of neat solvent/reference material required by thermal lens approaches is eliminated by coupling it to photoluminescence spectroscopy, allowing for the discrimination between materials with similar photoluminescence quantum yields. To achieve this, both radiative and non-radiative transitions are simultaneously measured using a photoluminescence spectrometer coupled to a multiwavelength thermal lens spectroscopy setup in a mode-mismatched dual-beam configuration, respectively. The absorption factor independent ratio of the thermal lens and photoluminescence signals can then be used to determine the fluorescence quantum yield both accurately and precisely. We validated our reported method using rhodamine 6G and further applied it to three novel structurally related diketopyrrolopyrrole based materials, which, in contrast to results obtained by other methods, unveiled significant differences in their photoluminescence quantum yields.
RESUMEN
We describe 7 Polynesian babies with a unique severe form of holocarboxylase synthetase deficiency characterized by antenatal growth retardation, subependymal cysts, only partial response to biotin, and a poor outcome.