Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37836113

RESUMEN

The wide rocky coastline of the Antofagasta hosts an intertidal ecosystem in which the species that inhabit it are routinely exposed to a wide range of physical and chemical conditions and have therefore evolved to tolerate extremes. In the search for new species of potential biotechnological interest with adaptations to a wide range of environmental conditions, the isolation and characterization of microalgae from these ecosystems is of great interest. Here, a new microalgal strain, Tetraselmis marina AC16-MESO, is described, which was isolated from a biofilm collected on the intertidal rocks of the Antofagasta coast (23°36'57.2″ S, 70°23'33.8″ W). In addition to the morphological characterization, 18S and ITS sequence as well as ITS-2 secondary structure analysis revealed an identity of 99.76% and 100% with the species Tetraselmis marina, respectively. The analyses of the culture characteristics and biochemical content showed similarities with other strains that are frequently used in aquaculture, such as the species Tetraselmis suecica. In addition, it is tolerant of a wide range of salinities, thus allowing its culture in water of varying quality. On the other hand, added to these characteristics, the results of the improvement of the lipid content in stressful situations of salinity observed in this study, together with other antecedents such as the potential in bioremediation already published for this strain by the same research group, present a clear example of its biotechnological plasticity. It is noteworthy that this strain, due to its characteristics, allows easy collection of its biomass by decantation and, therefore, a more cost-efficient harvesting than for other microalgal strains. Therefore, this new strain of Tetraselmis marina, first report of this species in Chile, and its morphologically, molecularly and biochemically description, presents promising characteristics for its use in biotechnology and as feed for aquaculture.

2.
Mar Drugs ; 21(9)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37755114

RESUMEN

The dinoflagellate Prorocentrum triestinum forms high biomass blooms that discolor the water (red tides), which may pose a serious threat to marine fauna and aquaculture exploitations. In this study, the algicidal effect of a bacterial strain (0YLH) belonging to the genus Shewanella was identified and evaluated against P. triestinum. The algicidal effects on the dinoflagellate were observed when P. triestinum was exposed to cell-free supernatant (CFS) from stationary-phase cultures of the 0YLH strain. After 24 h exposure, a remarkable reduction in the photosynthetic efficiency of P. triestinum was achieved (55.9%), suggesting the presence of extracellular bioactive compounds produced by the bacteria with algicidal activity. Furthermore, the CFS exhibited stability and maintained its activity across a wide range of temperatures (20-120 °C) and pH values (3-11). These findings highlight the algicidal potential of the bacterium Shewanella halifaxensis 0YLH as a promising tool for the environmentally friendly biological control of P. triestinum blooms.


Asunto(s)
Dinoflagelados , Shewanella , Floraciones de Algas Nocivas , Acuicultura
3.
J Vis Exp ; (174)2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34515692

RESUMEN

Harmful algae blooms (HABs) monitoring has been implemented worldwide, and Chile, a country famous for its fisheries and aquaculture, has intensively used microscopic and toxin analyses for decades for this purpose. Molecular biological methods, such as high-throughput DNA sequencing and bacterial assemblage-based approaches, are just beginning to be introduced in Chilean HAB monitoring, and the procedures have not yet been standardized. Here, 16S rRNA and 18S rRNA metabarcoding analyses for monitoring Chilean HABs are introduced stepwise. According to a recent hypothesis, algal-bacterial mutualistic association plays a critical synergetic or antagonistic relationship accounting for bloom initiation, maintenance, and regression. Thus, monitoring HAB from algal-bacterial perspectives may provide a broader understanding of HAB mechanisms and the basis for early warning. Metabarcoding analysis is one of the best suited molecular-based tools for this purpose because it can detect massive algal-bacterial taxonomic information in a sample. The visual procedures of sampling to metabarcoding analysis herein provide specific instructions, aiming to reduce errors and collection of reliable data.


Asunto(s)
Acuicultura , Floraciones de Algas Nocivas , Chile , ARN Ribosómico 16S/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-33092111

RESUMEN

Harmful algae blooms (HABs) cause acute effects on marine ecosystems due to their production of endogenous toxins or their enormous biomass, leading to significant impacts on local economies and public health. Although HAB monitoring has been intensively performed at spatiotemporal scales in coastal areas of the world over the last decades, procedures have not yet been standardized. HAB monitoring procedures are complicated and consist of many methodologies, including physical, chemical, and biological water sample measurements. Each monitoring program currently uses different combinations of methodologies depending on site specific purposes, and many prior programs refer to the procedures in quotations. HAB monitoring programs in Chile have adopted the traditional microscopic and toxin analyses but not molecular biology and bacterial assemblage approaches. Here we select and optimize the HAB monitoring methodologies suitable for Chilean geography, emphasizing on metabarcoding analyses accompanied by the classical tools with considerations including cost, materials and instrument availability, and easiness and efficiency of performance. We present results from a pilot study using the standardized stepwise protocols, demonstrating feasibility and plausibility for sampling and analysis for the HAB monitoring. Such specific instructions in the standardized protocol are critical obtaining quality data under various research environments involving multiple stations, different analysts, various time-points, and long HAB monitoring duration.


Asunto(s)
Acuicultura , Ecosistema , Explotaciones Pesqueras , Floraciones de Algas Nocivas , Chile , Proyectos Piloto
5.
PeerJ ; 6: e5295, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30065883

RESUMEN

The use of microalgae in biotechnological processes has received much attention worldwide. This is primarily due to the fact that they are inexpensive to grow, requiring only sunlight and CO2, whilst lending themselves to a range of uses, such as to reduce CO2 levels, as fish feed, in biofuel production, for the generation of secondary metabolites of interest, and in bioremediation. These features mean that microalgae are excellent candidates for the implementation of a range of eco-friendly technologies. Here, we investigated the behavior and feasibility of the use of the microalgal strain Tetraselmis marina AC16-MESO against heavy metal contamination focused on potential use in bioremediation. The following key parameters were recorded: (i) the sedimentation efficiency, which reached 95.6% after five hours of decantation; (ii) the ion tolerance (Ca2+, Co2+, Cu2+, Fe3+, Mn2+ and Ni2+) at concentrations of 0.1, 1.0, 5.0, 10.0 and 20.0 mg*L-1 and (iii) ion removal efficiency (Cu2+, Fe3+ and Mn2+). Our results indicated a higher tolerance for iron and calcium (20 ± 1.10 mg*L-1; 100 ± 8.10 mg*L-1), partial to nickel, manganese and copper (4.4 ± 0.10 mg*L-1; 4.4 ± 0.15 mg*L-1; 5 ± 1.25 mg*L-1) and less for cobalt (0.1 ± 0.20 mg*L-1). Moreover, removal efficiency of 40-90% for Cu2+, 100% for Fe3+, and 20-50% for Mn2+ over a 72 hours period, for ion concentrations of 1.0 and 5.0 mg*L-1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA