RESUMEN
Sepsis poses a significant challenge due its lethality, involving multiple organ dysfunction and impaired immune responses. Among several factors affecting sepsis, monocytes play a crucial role; however, their phenotype, proteomic profile, and function in septic shock remain unclear. Our aim was to fully characterize the subpopulations and proteomic profiles of monocytes seen in septic shock cases and discuss their possible impact on the disease. Peripheral blood monocyte subpopulations were phenotype based on CD14/CD16 expression by flow cytometry, and proteins were extracted from the monocytes of individuals with septic shock and healthy controls to identify changes in the global protein expression in these cells. Analysis using 2D-nanoUPLC-UDMSE identified 67 differentially expressed proteins in shock patients compared to controls, in which 44 were upregulated and 23 downregulated. These proteins are involved in monocyte reprogramming, immune dysfunction, severe hypotension, hypo-responsiveness to vasoconstrictors, vasodilation, endothelial dysfunction, vascular injury, and blood clotting, elucidating the disease severity and therapeutic challenges of septic shock. This study identified critical biological targets in monocytes that could serve as potential biomarkers for the diagnosis, prognosis, and treatment of septic shock, providing new insights into the pathophysiology of the disease.
Asunto(s)
Biomarcadores , Monocitos , Proteómica , Choque Séptico , Humanos , Choque Séptico/metabolismo , Choque Séptico/sangre , Proteómica/métodos , Monocitos/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Anciano , Proteoma/metabolismo , AdultoRESUMEN
Caffeine is a well-described ergogenic aid used to enhance athletic performance. Using animal models can greatly increase our understanding of caffeine's mechanisms in performance. Here, we adapted an animal weight-lifting exercise model to demonstrate caffeine's ergogenic effect in rats. Male Wistar rats (315 ± 35 g) were randomly divided into two groups: one group received 5 mg·kg-1 of caffeine (0.5 mL; CEx; n = 5) and the other 0.9% NaCl (0.5 mL; PEx; n = 4) through an orogastric probe (gavage) one hour before exercise. Weight-lifting exercise sessions were performed over three subsequent days, and the number of complete squats performed was counted. Analyses of the area under the curve in all three experiments showed that the CEx group responded more to stimuli, performing more squats (1.7-, 2.0-, and 1.6-fold; p < 0.05) than the control group did. These three days' data were analyzed to better understand the cumulative effect of this exercise, and a hyperbolic curve was fitted to these data. Data fitting from the caffeine-supplemented group, CEx, also showed larger Smax and Kd (2.3-fold and 1.6-fold, respectively) than the PEx group did. Our study demonstrated an acute ergogenic effect of caffeine in an animal weight-lifting exercise model for the first time, suggesting potential avenues for future research.
Asunto(s)
Cafeína , Ratas Wistar , Levantamiento de Peso , Animales , Cafeína/farmacología , Cafeína/administración & dosificación , Masculino , Proyectos Piloto , Ratas , Levantamiento de Peso/fisiología , Condicionamiento Físico Animal/fisiología , Sustancias para Mejorar el Rendimiento/farmacología , Sustancias para Mejorar el Rendimiento/administración & dosificaciónRESUMEN
This article explores the progressive integration of -omics methods, including genomics, metabolomics, and proteomics, into sports research, highlighting the development of the concept of "sportomics." We discuss how sportomics can be used to comprehend the multilevel metabolism during exercise in real-life conditions faced by athletes, enabling potential personalized interventions to improve performance and recovery and reduce injuries, all with a minimally invasive approach and reduced time. Sportomics may also support highly personalized investigations, including the implementation of n-of-1 clinical trials and the curation of extensive datasets through long-term follow-up of athletes, enabling tailored interventions for athletes based on their unique physiological responses to different conditions. Beyond its immediate sport-related applications, we delve into the potential of utilizing the sportomics approach to translate Big Data regarding top-level athletes into studying different human diseases, especially with nontargeted analysis. Furthermore, we present how the amalgamation of bioinformatics, artificial intelligence, and integrative computational analysis aids in investigating biochemical pathways, and facilitates the search for various biomarkers. We also highlight how sportomics can offer relevant information about doping control analysis. Overall, sportomics offers a comprehensive approach providing novel insights into human metabolism during metabolic stress, leveraging cutting-edge systems science techniques and technologies.
Asunto(s)
Inteligencia Artificial , Multiómica , Humanos , Genómica , Biología Computacional/métodos , Proteómica/métodos , Metabolómica/métodosRESUMEN
Tyrosine metabolism has an intense role in the synthesis of neurotransmitters. Our study used an untargeted, sportomics-based analysis of urine samples to investigate changes in metabolism during a soccer match in 30 male junior professional soccer players. Samples were collected before and after the match and analyzed using liquid chromatography and mass spectrometry. Results showed significant changes in tyrosine metabolism. Exercise caused a downregulation of the homogentisate metabolites 4-maleylacetoacetate and succinylacetone to 20% (p = 4.69E-5) and 16% (p = 4.25E-14), respectively. 4-Hydroxyphenylpyruvate, a homogentisate precursor, was found to be upregulated by 26% (p = 7.20E-3). The concentration of hawkinsin and its metabolite 4-hydroxycyclohexyl acetate increased ~six-fold (p = 1.49E-6 and p = 9.81E-6, respectively). Different DOPA metabolism pathways were also affected by exercise. DOPA and dopaquinone increased four-to six-fold (p = 5.62E-14 and p = 4.98E-13, respectively). 3-Methoxytyrosine, indole-5,6-quinone, and melanin were downregulated from 1 to 25%, as were dopamine and tyramine (decreasing to up to 5% or 80%; p= 5.62E-14 and p = 2.47E-2, respectively). Blood TCO2 decreased as well as urinary glutathione and glutamate (40% and 10% respectively) associated with a two-fold increase in pyroglutamate. Our study found unexpected similarities between exercise-induced changes in metabolism and the inherited disorder Hawkinsinuria, suggesting a possible transient condition called exercise-induced hawkinsinuria (EIh). Additionally, our research suggests changes in DOPA pathways may be involved. Our findings suggest that soccer exercise could be used as a model to search for potential countermeasures in Hawkinsinuria and other tyrosine metabolism disorders.
RESUMEN
The literature on mixed-species flocks references a wide variety of bird associations. These studies, however, have used an array of unstructured characteristics to describe flocks, ranging from the temporal occurrence of flocking to the identity and behavioural features of constituent members, with little consensus on which key traits define and characterize a mixed-species flock. Moreover, although most studies report species-specific roles, there is no clear consensus about what these roles signify nor how to define them. This lack of consistency limits our ability to compare flocks from different habitats, regions and species pools. To unify this sizable body of literature, we reviewed and synthesized 538 studies on mixed-species flocks. We propose 13 categories to classify mixed-species flocks using behavioural and physical traits at the flock and participant level, as well as the habitat where the flock occurs. Lastly, we discuss the historical terminology for different species roles and propose definitions to clarify and distinguish among nuclear, leader, sentinel, and flock-following species. We envision that these guidelines will provide a universal language for mixed-species flock research, paving the way for future comparisons and new insight between different regions and systems. This article is part of the theme issue 'Mixed-species groups and aggregations: shaping ecological and behavioural patterns and processes'.
Asunto(s)
Aves , Ecosistema , Animales , Conducta Animal , Conducta Social , Especificidad de la EspecieRESUMEN
BACKGROUND: The presence of phenolic compounds in sunflower is well reported in the literature; however, knowledge is scarce when it comes to the composition of other secondary metabolites in this species and their by-products. This work evaluated, for the first time, the phytochemical composition of sunflower meal produced in Brazil. A combination of mixture design and central composite rotatable design 23 models was then applied to maximize the recovery of bioactive compounds using ecologically friendly solvents and concentrating by applying activated carbon, a sustainable adsorbent. The product of this extraction-concentration was also evaluated by an untargeted metabolomic approach using ultra-performance liquid chromatography coupled to mass spectrometry. RESULTS: A diverse and abundant profile of phenolic compounds was obtained from Brazilian sunflower meal: in total, 51 natural products were tentatively identified, 35 of which for the first time in sunflower. The sorption capacity of the activated charcoal, in the optimized process conditions, was effective in the separation and concentration of minority secondary metabolites. The ecofriendly extract proved to be enriched in plumberoside, p-coumaric acid, and alkaloids. CONCLUSIONS: Investigation of the phytochemical profile of sunflower meal produced in Brazil pointed to several secondary metabolites reported for the first time in sunflower samples, including phenolic compounds, alkaloids, and terpenes. The use of activated charcoal in an alkaline medium as an adsorbent for the concentration of these phytochemicals, from an aqueous extract, generated a potentially cost-effective, ecofriendly extract, enriched in minor metabolites, indicating a possible innovative way to selectively obtain these compounds from sunflower meal. © 2022 Society of Chemical Industry.
Asunto(s)
Helianthus , Carbón Orgánico , Cromatografía Líquida de Alta Presión/métodos , Fenoles/análisis , Fitoquímicos/química , Extractos Vegetales/químicaRESUMEN
We report the mechanochemical reactivity of the highly strained pentacyclic hydrocarbon cubane. The mechanical reactivity of cubane is explored for three regioisomers with 1,2-, 1,3-, and 1,4-substituted pulling attachments. Whereas all compounds can be activated thermally, mechanical activation is observed via pulsed ultrasonication of cubane-containing polymers only when force is applied via 1,2-attachment. The single observed product of the force-coupled reaction is a thermally inaccessible syn-tricyclooctadiene, in contrast to cyclooctatetraene (observed thermally) or a pair of cyclobutadienes that would result from sequential cyclobutane scission. We further quantify the mechanochemical reactivity of cubane by single molecule force spectroscopy, and force-coupled rate constants for ring opening reach â¼33 s-1 at a force of â¼1.55 nN, lower than forces of 1.8-2.0 nN that are typical of conventional cyclobutanes.
Asunto(s)
Fenómenos Mecánicos , Polímeros , Polímeros/químicaRESUMEN
Sportomics is a subject-centered holistic method similar to metabolomics focusing on sports as the metabolic challenge. Dried blood spot is emerging as a technique due to its simplicity and reproducibility. In addition, mass spectrometry and integrative computational biology enhance our ability to understand exercise-induced modifications. We studied inflammatory blood proteins (Alpha-1-acid glycoprotein-A1AG1; Albumin; Cystatin C; C-reactive protein-CRP; Hemoglobin-HBA; Haptoglobin-HPT; Insulin-like growth factor 1; Lipopolysaccharide binding protein-LBP; Mannose-binding lectin-MBL2; Myeloperoxidase-PERM and Serum amyloid A1-SAA1), in 687 samples from 97 World-class and Olympic athletes across 16 sports in nine states. Data were analyzed with Spearman's rank-order correlation. Major correlations with CRP, LBP; MBL2; A1AG1, and SAA1 were found. The pairs CRP-SAA1 and CRP-LBP appeared with a robust positive correlation. Other pairs, LBP-SAA1; A1AG1-CRP; A1AG1-SAA1; A1AG1-MBL, and A1AG1-LBP, showed a broader correlation across the sports. The protein-protein interaction map revealed 1500 interactions with 44 core proteins, 30 of them linked to immune system processing. We propose that the inflammation follow-up in exercise can provide knowledge for internal cargo management in training, competition, recovery, doping control, and a deeper understanding of health and disease.
Asunto(s)
Lectina de Unión a Manosa , Deportes , Humanos , Reproducibilidad de los Resultados , Proteínas de Fase Aguda , Proteína C-Reactiva/metabolismo , AtletasRESUMEN
We have been using sportomics to understand hypermetabolic stress. Cross Combat (CCombat) has recently been initiated as a high-intensity functional training method inspired by CrossFit. We used a CCombat session to induce metabolic stress and evaluated its effects on hydration and kidney function. Blood samples were collected from 16 elite-level professional male athletes engaged in training sessions over a 96-h protocol. Blood myoglobin increased by ~ 3.5-fold (119 ± 21 to 369 ± 62 nmol/L; p = .001) in response to the protocol, returning to the pre-exercise level within 48 h. Furthermore, D-dimer levels increased from 6.5 ± 0.6 to 79.4 ± 21.3 µmol/L (p < .001) in response to exercise decreasing during recovery with high variability among the studied athletes. Albuminemia and creatininemia increased ~ 10% and cystatin C increased ~ 240% (1.7 ± 0.1 to 5.7 ± 0.5 mg/L; p < .001; effect size = 2.4) in response to the protocol. We measured albuminuria (HuA) to assess kidney permeability to albumin caused by exercise. HuA increased ~ 16-fold (0.16 ± 0.03 to 2.47 ± 0.41 µmol/L; p < .001; effect size = 1.4) in response to exercise, dropping and reaching basal levels during 48 h. Here, we suggest that microalbuminuria can be used as an early, sensitive, easy, and inexpensive biomarker to evaluate hydration status changes during intensive exercise, decreasing chronic impairment in renal function.
Asunto(s)
Albuminuria , Atletas , Biomarcadores , Ejercicio Físico/fisiología , Humanos , MasculinoRESUMEN
Sorghum is a potential substitute for corn/wheat in cereal-based extruded products. Despite agronomic advantages and its rich diversity of phenolic compounds, sorghum kafirins group together and form complex with tannins, leading to a low digestibility. Phenolic content/profile by UPLC-ESI-QTOF-MSE and kafirins polymerization by SE-HPLC were evaluated in wholemeal sorghum extrudates; tannin-rich (#SC319) and tannin-free (#BRS330) genotypes with/without turmeric powder. Total phenolic, proantocyanidin and flavonoid contents were strongly correlated with antioxidant capacity (r > 0.9, p < 0.05). Extrusion increased free (+60%) and decreased bound phenolics (-40%) in #SC319, but reduced both (-40%; -90%, respectively) in #BRS330, which presented lower abundance after extrusion. Turmeric addition did not significantly impact antioxidant activity, phenolic content and profile and kafirins profile. Tannins presence/absence impacted phenolic profiles and polymerization of kafirins which appears related to the thermoplastic process. The extrusion improved proteins solubility and can positively enhance their digestibility (phenolic compounds-proteins interactions), making more accessible to proteolysis in sorghum extrudates.
Asunto(s)
Sorghum , Curcuma , Grano Comestible/química , Fenoles/análisis , TaninosRESUMEN
Gluten proteins contribute to the rheological properties of dough. Mass spectrometric techniques help to understand the contribution of these proteins to the quality of the end product. This work aimed to apply modern proteomic techniques to characterize and provide a better understanding of gluten proteins in wheat flours of different technological qualities. Nine Brazilian wheat flours (Triticum aestivum) classified by rheological gluten force were used to extract the proteins. Extracts were pooled together by technological qualities in low (LW), medium (MD), and superior (SP). Peptides were analyzed by nanoUPLC and mass spectrometry multiplex method (MSE). Collectively, 3545 peptides and 1297 proteins were identified, and 116 proteins were found differentially abundant. Low molecular weight glutenin subunits (LMW-GS) were found up-regulated only in SP samples. Proteins related to wheat grain hardness, such as puroindoline-A, were found in significant concentration in LW samples. After domain prediction, LW presented a different pattern with a lower abundance of functional domains, and SP presented chaperones, known to be involved in adequate folding of the storage proteins. NanoUPLC-MSE was efficient in analyzing and distinguishing the proteomic pattern of wheat flours from different qualities, pointing out the differentially abundant gluten proteins and providing a better understanding of wheat flour quality. SIGNIFICANCE: Common wheat is one of the most important staple food sources in the world. The improvement and comprehension of wheat quality has been a major objective of plant breeders and cereal chemists. Our findings highlighted the application of a modern proteomic approach to obtain a better understanding of the impact of gluten proteins on the technological quality of different wheat flours. The obtained data revealed different abundances of wheat quality-related proteins in superior quality flours when compared with samples of low rheological properties. In addition, multivariate statistical analysis clearly distinguished the flours of different qualities. This work contributes to the consolidation of research in the field of wheat technological quality.
Asunto(s)
Harina , Triticum , Brasil , Pan , Glútenes , ProteómicaRESUMEN
Although lowland tropical rain forests were once widely believed to be the archetype of stability, seasonal variation exists. In these environments, seasonality is defined by rainfall, leading to a predictable pattern of biotic and abiotic changes. Only the full annual cycle reveals niche breadth, yet most studies of tropical organisms ignore seasonality, thereby underestimating realized conditions. If human-modified habitats display more seasonal stress than intact habitats, then ignoring seasonality will have particularly important repercussions for conservation. We examined the seasonal dynamics of Amazonian mixed-species flocks, an important species interaction network, across three habitats with increasing human disturbance. We quantified seasonal space use, species richness and attendance, and four ecological network metrics for flocks in primary forest, small forest fragments, and regenerating secondary forest in central Amazonia. Our results indicate that, even in intact, lowland rain forest, mixed-species flocks exhibit seasonal differences. During the dry season, flocks included more species, generally ranged over larger areas, and displayed network structures that were less complex and less cohesive. We speculate that-because most flocking species nest during the dry season, a time of reduced arthropod abundance-flocks are simultaneously constrained by these two competing pressures. Moreover, these seasonal differences were most pronounced in forest fragments and secondary forest, habitats that are less buffered from the changing seasons. Our results suggest that seasonality influences the conservation value of human-modified habitats, raising important questions about how rain forest organisms will cope with an increasingly unstable climate.
Asunto(s)
Bosques , Bosque Lluvioso , Brasil , Ecosistema , Humanos , Estaciones del Año , Árboles , Clima TropicalRESUMEN
Unconventional parts of vegetables represent a rich source of health-promoting phytochemicals. The phenolic profile of cabbage-stalk flour (CSF), pineapple-crown flour (PCF), and their essential oils were characterized via UPLC-ESI-QTOF-MSE and GC-FID/MS. Antimicrobial activity was tested against five strains, and antioxidant activities were determined in free and bound extracts. Globally, 177 phenolics were tentatively identified in PCF (major p-coumaric acid, ferulic acid, and 4-hydroxybenzaldehyde) and 56 in CSF (major chlorogenicacid, quercetin 3-O-glucuronide, and p-coumaric acid). PCF exhibited a distinguished profile (lignans, stilbenes) and antioxidant capacity, especially in bound extracts (1.3 g GAE.100 g-1; 0.6 g catechin eq.100 g-1; DPPH: 244.7; ABTS: 467.8; FRAP: 762.6 µg TE.g-1, ORAC: 40.9 mg TE.g-1). The main classes of volatile compounds were fatty acids, their esters, and terpenes in CSF (30) and PCF (41). A comprehensive metabolomic approach revealed CSF and PCF as a promising source of PC, showing great antioxidant and discrete antimicrobial activities.
Asunto(s)
Ananas/química , Antiinfecciosos/análisis , Antioxidantes/química , Brassica/química , Harina/análisis , Fenoles/química , Compuestos Orgánicos Volátiles/química , Ananas/metabolismo , Antiinfecciosos/farmacología , Brassica/metabolismo , Cromatografía Líquida de Alta Presión , Análisis Discriminante , Cromatografía de Gases y Espectrometría de Masas , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Aceites Volátiles/análisis , Aceites Volátiles/química , Fenoles/análisis , Fenoles/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Análisis de Componente Principal , Espectrometría de Masa por Ionización de Electrospray , Compuestos Orgánicos Volátiles/análisisRESUMEN
Multiple environmental stressors impact wildlife populations, but we often know little about their cumulative and combined influences on population outcomes. We generally know more about past effects than potential future impacts, and direct influences such as changes of habitat footprints than indirect, long-term responses in behavior, distribution, or abundance. Yet, an understanding of all these components is needed to plan for future landscapes that include human activities and wildlife. We developed a case study to assess how spatially explicit individual-based modeling could be used to evaluate future population outcomes of gradual landscape change from multiple stressors. For Greater Sage-grouse in southwest Wyoming, USA, we projected oil and gas development footprints and climate-induced vegetation changes 50 years into the future. Using a time-series of planned oil and gas development and predicted climate-induced changes in vegetation, we recalculated habitat selection maps to dynamically modify future habitat quantity, quality, and configuration. We simulated long-term Sage-grouse responses to habitat change by allowing individuals to adjust to shifts in habitat availability and quality. The use of spatially explicit individual-based modeling offered a useful means of evaluating delayed indirect impacts of landscape change on wildlife population outcomes. The inclusion of movement and demographic responses to oil and gas infrastructure resulted in substantive changes in distribution and abundance when cumulated over several decades and throughout the regional population. When combined, additive development and climate-induced vegetation changes reduced abundance by up to half of the original size. In our example, the consideration of only a single population stressor the final possible population size by as much as 50%. Multiple stressors and their cumulative impacts need to be broadly considered through space and time to avoid underestimating the impacts of multiple gradual changes and overestimating the ability of populations to withstand change.
Asunto(s)
Conservación de los Recursos Naturales , Galliformes , Animales , Clima , Ecosistema , WyomingRESUMEN
Agro-industrial byproducts are considered good sources of macronutrients and phytochemicals. Fruit and vegetable residues (FVR), obtained after the production of an isotonic beverage, have previously been characterized containing 80% insoluble dietary fibers from total fibers (48.4%), 26% available carbohydrates, 9.5% proteins and 5% lipids. Nevertheless, fruit and vegetables provide phytochemicals which have been related to human health such as phenolic compounds. The loss of specific compounds over the production process is related to their partitioning between fruit and vegetables and byproducts. However, phenolic profile of FVR remains unknown. This work is focused on the evaluation of FVR as a natural source of these bioactive compounds. For this purpose, pressurized liquid extraction (PLE) has been proposed as extraction technique for recovering phenolic compounds from FVR. The experimental variables were temperature and percentage of solvent (ethanol and water). Phenolic compounds extracts were characterized by UPLC-ESI-Q-TOF-MS and a discussion about phenolic and macronutrient interactions was established. Globally, 88 compounds were tentatively identified: phenolic acids (28), flavonoids (32), and other polyphenols (28). The PLE conditions applied yielded different breaking matrix-analyte interactions leading to an increase in the number of compounds. The highest phenolic acids content was achieved with high temperature while lower temperatures were more efficient in extracting flavonoid. By establishing the phenolics profile in food byproducts such as FVR, it is possible to more effectively apply these byproducts as nutraceutical, food or pharmaceutical ingredients. PRACTICAL APPLICATION: Flow diagram of bioactive compounds recovering from isotonic beverage byproduct is proposed using pressurized liquid extraction. The plant-bioactives mechanism relies on fruit and vegetable byproducts changes under different extraction conditions. The obtained extracts can most effectively be applied as nutraceuticals or as ingredients in food or pharmaceutical inputs.
Asunto(s)
Bebidas/análisis , Fraccionamiento Químico/métodos , Frutas/química , Nutrientes/aislamiento & purificación , Fitoquímicos/aislamiento & purificación , Verduras/química , Residuos/análisis , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Fraccionamiento Químico/instrumentación , Fibras de la Dieta/análisis , Manipulación de Alimentos , Nutrientes/química , Fitoquímicos/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Polifenoles/química , Polifenoles/aislamiento & purificaciónRESUMEN
Keto analogues and amino acids (KAAA) supplementation can reduce blood ammonia concentrations in athletes undergoing high-intensity exercise under both ketogenic and thermoneutral conditions. This study evaluated the acute effects of KAAA supplementation on ammonia metabolism during extenuating endurance exercise in rats fed a ketogenic diet. In all, eighty male Fischer rats at 90 d of age were divided into eight groups, and some were trained using a swimming endurance protocol. A ketogenic diet supplemented with keto analogues was administered for 10 d. Administration of the ketogenic diet ended 3 d before the exhaustion test (extenuating endurance exercise). A ketogenic diet plus KAAA supplementation and extenuating endurance exercise (trained ketogenic diet supplemented with KAAA (TKKa)) increased blood ammonia concentrations by approximately 50 % compared with the control diet (trained control diet supplemented with KAAA (TCKa)) and similar training (effect size=1·33; statistical power=0·50). The KAAA supplementation reduced blood urea concentrations by 4 and 18 % in the control and ketogenic diet groups, respectively, compared with the groups fed the same diets without supplementation. The trained groups had 60 % lower blood urate concentrations after TCKa treatment than after TKKa treatment. Our results suggest that KAAA supplementation can reduce blood ammonia concentrations after extenuating endurance exercise in rats fed a balanced diet but not in rats fed a ketogenic diet.
Asunto(s)
Aminoácidos/uso terapéutico , Amoníaco/sangre , Dieta , Suplementos Dietéticos , Hiperamonemia/prevención & control , Cetoácidos/uso terapéutico , Resistencia Física/fisiología , Aminoácidos/farmacología , Animales , Dieta Cetogénica , Hiperamonemia/sangre , Hiperamonemia/etiología , Cetoácidos/farmacología , Masculino , Condicionamiento Físico Animal/fisiología , Ratas Endogámicas F344RESUMEN
KEY MESSAGE: Gibberellic acid elicited synthesis of many phenols from different classes and enhanced production of sesquiterpenoids, polyterpenoids, steroids and monoterpenoids compared to control and 6-benzylaminopurine. Little is known about the effects of 6-benzylaminopurine (BA) and gibberellic acid (GA3) on the synthesis of secondary metabolites in species of Lamiaceae. In this study, for the first time, the profile of secondary metabolites in plantlets of Cunila menthoides was characterized, using UPLC-ESI-Qq-oaTOF-MS. Ninety metabolites were identified, including polyphenols and terpenes. BA down-regulated most of the identified molecules in relation to GA3 and MS0 (control). The results showed that GA3 elicited synthesis of many phenols from different classes, and seemed to play a major role in the shikimate pathway in relation to BA. GA3 enhanced production of sesquiterpenoids, polyterpenoids, steroids and monoterpenoids compared to MS0 and BA, and also seemed to positively influence the MEP/DOXP and MVA pathways. These data show the most comprehensive metabolomic profile of Cunila menthoides to date, and the effects of BA and GA3 on the synthesis of secondary metabolites, modulating quantitative aspects of metabolism in Lamiaceae.
Asunto(s)
Compuestos de Bencilo/farmacología , Giberelinas/farmacología , Lamiaceae/efectos de los fármacos , Lamiaceae/metabolismo , Metabolómica/métodos , Purinas/farmacología , Redes y Vías Metabólicas/efectos de los fármacosRESUMEN
This study evaluated the acute effect of keto analogue and amino acid (AA-KAAA) supplementation on both white blood cell counts and the established biomarkers of muscle damage during exercise under thermoneutral conditions. Sixteen male cyclists received a ketogenic diet for two days and were divided into two equal groups: a group taking AA-KAAA (KA) or a control group (PL). The athletes performed a two hour cycling session followed by a maximum incremental test until voluntary exhaustion (VExh). Blood samples were obtained at rest and during exercise for further hematological and biochemical analyses. Exercise-induced ammonemia increased in the PL group at VExh (75%) but remained unchanged in the KA group. Both groups exhibited a significant increase in leukocyte and neutrophil counts of â¼85% (â¼13 × 109 L-1), but the shape of the lymphocytes and the eosinophil counts suggest that AA-KAAA supplementation helps prevent lymphocytosis. AA-KAAA supplementation induced a decrease in creatine kinase and aspartate aminotransferase levels at VExh while showing a significant decrease in lactate dehydrogenase at 120 min. We found that AA-KAAA supplementation decreases both the lymphocyte count response in blood and the established biomarkers of muscle damage after intense exercise under a low heat stress environment.