Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Pharmacol ; 106: 104382, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325623

RESUMEN

Although banned in food-producing animals, residues of malachite green (MG) and its primary metabolite, leucomalachite green (LMG), have been found in fish due to illegal use in aquaculture and the release of industrial wastewater, which represent a serious risk to food and environmental securities. This study aimed to investigate the residue depletion profile of MG and LMG in edible tissues of Nile tilapia (Oreochromis niloticus) and pacu (Piaractus mesopotamicus) cultured simultaneously under the same environmental conditions to support control measures in case of abuse. An analytical method involving QuEChERS sample preparation and liquid chromatography coupled to tandem mass spectrometry was developed, validated, and applied to quantify MG and LMG residues in fish fillets from two depletion experiments after treatment by immersion bath (MG at 0.10 mg L-1 for 60 min). During the experiment, the average water temperature was 30 ºC, while the pH was 6.9. The method is selective, precise (CV = 0.4 - 22%) and accurate (recovery 92 - 114%). The limits of detection and quantification are 0.15 and 0.5 ng g-1, respectively. In both species, the sum of MG and LMG residues were quantified up to the 32nd day post-exposure, and the concentrations were significantly higher in the pacu fillets (up to 3284 ng g-1) than in Nile tilapia (up to 432 ng g-1). The sums of MG and LMG residues were below 2 ng g-1 at 44 days and 342 days for Nile tilapia and pacu, respectively - the Minimum Required Performance Limit (MRPL) for analytical methods intended to monitor forbidden substances in food according to old European Commission guidelines. The persistence of MG residues in pacu may be attributed to its higher lipid content, which favors the accumulation of the non-polar metabolite LMG. These results provide insights into the concern about human, animal, and environmental health risks resulting from unauthorized use or aquatic contamination by industrial wastewater containing MG residues.


Asunto(s)
Cíclidos , Tilapia , Animales , Humanos , Aguas Residuales , Colorantes de Rosanilina
2.
Artículo en Inglés | MEDLINE | ID: mdl-37988113

RESUMEN

Levamisole, an anthelmintic and immunostimulant drug, has been studied as a promising alternative for aquaculture use. While oral administration through feeding is the main route of administration in fish farming, no studies evaluating methods of levamisole incorporation into the feed have been reported so far. Therefore, this study aimed to evaluate potential procedures for levamisole incorporation in extruded fish feed using ethyl cellulose, gelatin, or vegetable oil, to avoid drug leaching to the water during the animal's medication. A suitable LC-MS/MS method was optimized (full factorial design), validated, and applied to evaluate the efficiency of the process, the homogeneity of the drug concentration, and the leaching rate. The method has been demonstrated to be selective, precise (RSD < 4.9%), accurate (recovery > 98.4%), and linear (r > 0.99, 125-750 mg kg-1). The incorporation procedures using the three coating agents showed high incorporation efficiency (70%) and a homogeneous drug concentration among the extruded feed pellets. A low levamisole leaching rate was verified in the feed prepared using the ethyl cellulose coating procedure (4.3% after 15 min of immersion in the water). On the other hand, fish feed coated with gelatin and oil resulted in a high leaching rate (30-35% after 15 min). Thus, this study shows that coating ethyl cellulose may be a promising procedure for levamisole incorporation in fish feed and with the potential to enhance its use in animal production while reducing environmental contamination.


Asunto(s)
Levamisol , Agua , Animales , Cromatografía Liquida , Gelatina , Espectrometría de Masas en Tándem , Peces , Alimentación Animal/análisis
3.
Animals (Basel) ; 13(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37570313

RESUMEN

Sulfadimethoxine (SDM) and ormetoprim (OMP) are antimicrobials used in combination to treat bacterial infections in fish farming. The use of this drug combination is not yet regulated in some countries, such as Brazil. Due to the lack of regulated drugs for aquaculture in Brazil, this study investigated the residue depletion profile of SDM and OMP in Nile tilapia (Oreochromis sp.) after oral administration. Fish were treated with medicated feed containing a 5:1 ratio of SDM:OMP at the dose of 50 mg kg BW-1 for five consecutive days with an average water temperature of 28 °C. The drugs were incorporated into the feed by using a gelatin coating process which promoted homogeneity in drug concentration and prevented the drug leaching into the water during medication. The SDM and OMP determination in fish fillets (muscle plus skin in natural proportions) was performed using the QuEChERS approach followed by LC-MS/MS quantification. The analytical method was validated according to Brazilian and selected international guidelines. A withdrawal period of 9 days (or 252 °C days) was estimated for the sum of SDM and OMP residues at concentration levels below the maximum residue level of 100 µg kg-1.

4.
Food Chem ; 405(Pt A): 134852, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36370561

RESUMEN

An analytical method for the determination of erythromycin A (ERY) residues in fish fillet was developed, optimized, and validated employing a modified QuEChERS procedure associated to DLLME technique as a preconcentration step. The obtained LOD and the LOQ were 0.1 µg kg-1 and 1 µg kg-1, respectively. The validated method provides linearity in the range of 1 to 20 µg kg-1, precision (CV < 6.3 %) and accuracy (recovery ranging from 103 to 110 %). The procedure was applied in an experimental study to evaluate the residual depletion profile of ERY in fish (Piaractus mesopotamicus) after oral administration. The treatment was carried out at a daily dose of 100 mg (kg BW)-1 of ERY, for 7 consecutive days and with an average water temperature of 30 °C. A withdrawal time of 240°-day was estimated for eliminating ERY residues at concentration levels below the maximum residue limit considered (MRL 100 µg kg-1).


Asunto(s)
Characiformes , Residuos de Medicamentos , Animales , Eritromicina , Residuos de Medicamentos/análisis , Administración Oral
5.
Compr Rev Food Sci Food Saf ; 20(1): 48-90, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33443807

RESUMEN

Alternatives to the use of conventional veterinary drugs in food-producing animals have gained attention, such as the use of natural products (NPs), mainly to soften the risks to the animal, the environment, and consumer's health. Although NPs have consistent advantages over conventional drugs, they cannot be considered risk free under food safety matters. In this way, this document presents a comprehensive overview of the importance of considering both the pharmacological and toxicological properties of the constituents of a NP from plants intending the standardization and regulation of its use in food-producing animals. Terpenes are the most diverse class of natural substances present in NP of vegetal origin with a broad range of biological activities that can be explored in veterinary science; however, certain plants and terpenes also have significant toxic effects, a fact that can harm the health of animals and consequently generate economic losses and risks for humans. In this context, this review gathered scientific data of vegetal species of importance to ethnoveterinary for food-producing animals, which produce terpenes, its biological effects, and their implications on food safety issues for consumers. For this, more than 300 documents were selected from different online scientific databases. The present data and discussion may contribute to the rational commercial exploration of this class of NPs in veterinary medicine.


Asunto(s)
Plantas Medicinales , Drogas Veterinarias , Animales , Inocuidad de los Alimentos , Humanos , Fitoterapia , Terpenos/toxicidad
6.
Microbes Environ ; 35(2)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32269200

RESUMEN

Atrazine is a triazine herbicide that is widely used to control broadleaf weeds. Its widespread use over the last 50 years has led to the potential contamination of soils, groundwater, rivers, and lakes. Its main route of complete degradation is via biological means, which is carried out by soil microbiota using a 6-step pathway. The aim of the present study was to investigate whether application of atrazine to soil changes the soil bacterial community. We used 16S rRNA gene sequencing and qPCR to elucidate the microbial community structure and assess the abundance of the atrazine degradation genes atzA, atzD, and trzN in a Brazilian soil. The results obtained showed that the relative abundance of atzA and trzN, encoding triazine-initiating metabolism in Gram-negative and -positive bacteria, respectively, increased in soil during the first weeks following the application of atrazine. In contrast, the abundance of atzD, encoding cyanuric acid amidohydrolase-the fourth step in the pathway-was not related to the atrazine treatment. Moreover, the overall soil bacterial community showed no significant changes after the application of atrazine. Despite this, we observed increases in the relative abundance of bacterial families in the 4th and 8th weeks following the atrazine treatment, which may have been related to higher copy numbers of atzA and trzN, in part due to the release of nitrogen from the herbicide. The present results revealed that while the application of atrazine may temporarily increase the quantities of the atzA and trzN genes in a Brazilian Red Latosol soil, it does not lead to significant and long-term changes in the bacterial community structure.


Asunto(s)
Atrazina/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Herbicidas/farmacología , Microbiota/efectos de los fármacos , Microbiología del Suelo , Biodegradación Ambiental , Brasil , Genes Bacterianos , Bacterias Gramnegativas/clasificación , Bacterias Grampositivas/clasificación , ARN Ribosómico 16S/genética , Suelo/química , Contaminantes del Suelo/farmacología , Clima Tropical
7.
BMC Pharmacol Toxicol ; 20(Suppl 1): 82, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31852534

RESUMEN

BACKGROUND: The presence of impurities in some drugs may compromise the safety and efficacy of the patient's treatment. Therefore, establishing of the biological safety of the impurities is essential. Diabetic patients are predisposed to tissue damage due to an increased oxidative stress process; and drug impurities may contribute to these toxic effects. In this context, the aim of this work was to study the toxicity, in 3 T3 cells, of the antidiabetic agents sitagliptin, vildagliptin, and their two main impurities of synthesis (S1 and S2; V1 and V2, respectively). METHODS: MTT reduction and neutral red uptake assays were performed in cytotoxicity tests. In addition, DNA damage (measured by comet assay), intracellular free radicals (by DCF), NO production, and mitochondrial membrane potential (ΔψM) were evaluated. RESULTS: Cytotoxicity was observed for impurity V2. Free radicals generation was found at 1000 µM of sitagliptin and 10 µM of both vildagliptin impurities (V1 and V2). A decrease in NO production was observed for all vildagliptin concentrations. No alterations were observed in ΔψM or DNA damage at the tested concentrations. CONCLUSIONS: This study demonstrated that the presence of impurities might increase the cytotoxicity and oxidative stress of the pharmaceutical formulations at the concentrations studied.


Asunto(s)
Composición de Medicamentos/normas , Contaminación de Medicamentos , Fibroblastos/efectos de los fármacos , Hipoglucemiantes/toxicidad , Fosfato de Sitagliptina/toxicidad , Vildagliptina/toxicidad , Células 3T3 , Animales , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Fibroblastos/metabolismo , Fibroblastos/patología , Hipoglucemiantes/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Fosfato de Sitagliptina/química , Vildagliptina/química
8.
J Chromatogr Sci ; 56(7): 650-655, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29912345

RESUMEN

Microemulsion electrokinetic chromatography (MEEKC) is an electrophoretic methodology based on the separation of compounds by a microemulsionated electrolyte. There are few options for the evaluation of the stability and content of the oral anticoagulant rivaroxaban (RIV) in pharmaceutical formulations. RIV has low water solubility and undergoes ionization only under restricted pH conditions (pH < 1 or pH > 13), thus, hindering the application of free zone capillary electrophoresis as an analytical method. Therefore, the work aimed at developing and validating a stability-indicating MEEKC method for the analysis of RIV in pharmaceutical formulations. Separation was performed in a fused-silica capillary applying a voltage of 30 kV. The microemulsion system consisted of 13 mM tetraborate, pH 9.75 + 1.2% SDS + 1.0% ethyl acetate + 2.4% butanol. The linearity range was 25-150 µg mL-1, with r = 0.9982. Drug degradations were performed in acid and basic media (HCl 1 M and NaOH 0.1 M, respectively), oxidation with 3%H2O2, 60°C temperature and exposure to UV-C radiation. No interferences with RIV or internal standard peaks were detected. Method robustness was accessed through Plackett-Burman experimental design, after evaluation of model validity. Trueness values between 100.49 and 100.68% were obtained with repeatability. The method developed was found appropriate for quality control of RIV tablets, as a consistent analytical technique that is considered less damaging to the environment due to its low consumption of organic reagents.


Asunto(s)
Anticoagulantes/análisis , Cromatografía Capilar Electrocinética Micelar/métodos , Rivaroxabán/análisis , Estabilidad de Medicamentos , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados
9.
Drug Dev Ind Pharm ; 44(5): 723-728, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29192518

RESUMEN

OBJECTIVE: This study aimed to develop and validate an in vitro dissolution method based on in silico-in vivo data to determine whether an in vitro-in vivo relationship could be established for rivaroxaban in immediate-release tablets. SIGNIFICANCE: Oral drugs with high permeability but poorly soluble in aqueous media, such as the anticoagulant rivaroxaban, have a major potential to reach a high level of in vitro-in vivo relationship. Currently, there is no study on scientific literature approaching the development of RIV dissolution profile based on its in vivo performance. METHODS AND RESULTS: Drug plasma concentration values were modeled using computer simulation with adjustment of pharmacokinetic properties. Those values were converted into drug fractions absorbed by the Wagner-Nelson deconvolution approach. Gradual and continuous dissolution of RIV tablets was obtained with a 30 rpm basket on 50 mM sodium acetate +0.2% SDS, pH 6.5 medium. Dissolution was conducted for up to 180 min. The fraction absorbed was plotted against the drug fraction dissolved, and a linear point-to-point regression (R2 = 0.9961) obtained. CONCLUSION: The in vitro dissolution method designed promoted a more convenient dissolution profile of RIV tablets, whereas it suggests a better relationship with in vivo performance.


Asunto(s)
Rivaroxabán/química , Solubilidad , Comprimidos/química , Simulación por Computador , Técnicas In Vitro , Modelos Lineales , Permeabilidad
10.
Environ Res ; 137: 349-56, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25601738

RESUMEN

INTRODUCTION: Elucidation of effective biomarkers may provide tools for the early detection of biological alterations caused by benzene exposure and may contribute to the reduction of occupational diseases. This study aimed to assess early alterations on hematological and immunological systems of workers exposed to benzene. METHODS: Sixty gasoline station attendants (GSA group) and 28 control subjects were evaluated. Environmental and biological monitoring of benzene exposure was performed in blood and urine. The potential effect biomarkers evaluated were δ-aminolevulinate dehydratase (ALA-D) activity, CD80 and CD86 expression in lymphocytes and monocytes, and serum interleukin-8 (IL-8). The influence of confounding factors and toluene co-exposure were considered. RESULTS: Although exposures were below ACGIH (American Conference of Governmental Industrial Hygienists) limits, reduced ALA-D activity, decreased CD80 and CD86 expression in monocytes and increased IL-8 levels were found in the GSA group compared to the control subjects. Furthermore, according to multiple linear regression analysis, benzene exposure was associated to a decrease in CD80 and CD86 expression in monocytes. CONCLUSIONS: These findings suggest, for the first time, a potential effect of benzene exposure on ALA-D activity, CD80 and CD86 expression, IL-8 levels, which could be suggested as potential markers for the early detection of benzene-induced alterations.


Asunto(s)
Benceno/toxicidad , Contaminantes Ambientales/toxicidad , Exposición Profesional , Adulto , Benceno/metabolismo , Biomarcadores/sangre , Biomarcadores/orina , Análisis Químico de la Sangre , Brasil , Monitoreo del Ambiente , Contaminantes Ambientales/sangre , Contaminantes Ambientales/orina , Citometría de Flujo , Pruebas Hematológicas , Humanos , Péptidos y Proteínas de Señalización Intercelular/sangre , Masculino
11.
Int J Environ Res Public Health ; 11(10): 10851-67, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25329536

RESUMEN

Aging is often accompanied by cognitive impairments and influenced by oxidative status and chemical imbalances. Thus, this study was conducted to examine whether age-related cognitive deficit is associated with oxidative damage, especially with inhibition of the enzyme delta-aminolevulinate dehydratase (ALA-D), as well as to verify the influence of some metals in the enzyme activity and cognitive performance. Blood ALA-D activity, essential (Fe, Zn, Cu, Se) and non-essential metals (Pb, Cd, Hg, As, Cr, Ni, V) were measured in 50 elderly and 20 healthy young subjects. Cognitive function was assessed by tests from Consortium to Establish a Registry for Alzheimer's Disease (CERAD) battery and other. The elderly group presented decreased ALA-D activity compared to the young group. The index of ALA-D reactivation was similar to both study groups, but negatively associated with metals. The mean levels of essential metals were within the reference values, while the most toxic metals were above them in both groups. Cognitive function impairments were observed in elderly group and were associated with decreased ALA-D activity, with lower levels of Se and higher levels of toxic metals (Hg and V). Results suggest that the reduced ALA-D activity in elderly can be an additional factor involved in cognitive decline, since its inhibition throughout life could lead to accumulation of the neurotoxic compound ALA. Toxic metals were found to contribute to cognitive decline and also to influence ALA-D reactivation.


Asunto(s)
Trastornos del Conocimiento/epidemiología , Cognición , Inhibidores Enzimáticos/toxicidad , Metales Pesados/sangre , Estrés Oxidativo , Porfobilinógeno Sintasa/sangre , Adulto , Anciano , Brasil/epidemiología , Trastornos del Conocimiento/sangre , Trastornos del Conocimiento/enzimología , Inhibidores Enzimáticos/sangre , Femenino , Humanos , Masculino , Metales Pesados/toxicidad , Persona de Mediana Edad , Porfobilinógeno Sintasa/antagonistas & inhibidores , Selenio/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA