Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 284: 131358, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34323799

RESUMEN

A preliminary assessment has been carried out on the integration of an anoxic biotrickling filter and a nitrification bioreactor for the simultaneous treatment of ammonium-rich water and H2S contained in a biogas stream. The nutrient consumption in the biotrickling filter was as follows (mol-1 NO3--N): 6.3·10-4 ± 1.2·10-4 mol PO43--P, 0.04 ± 0.05 mol NH4+-N and 0.04 ± 0.03 mol K+-K. Furthermore, it was possible to supply a mixture of biogenic NO3- and NO2- into the biotrickling filter from the nitrification bioreactor to obtain a maximum elimination capacity of 152 gH2S-S m-3 h-1. The equivalence between the two compounds was 1 mol NO3--N equal to 1.6 mol NO2--N. The biotrickling filter was also operated under a stepped variable inlet load (30-100 gH2S-S m-3 h-1) and outlet H2S concentrations of less than 150 ppmV were obtained. It was also possible to maintain the outlet H2S concentration close to 15 ppmV with a feedback controller by manipulating the feed flow (in the nitrification bioreactor). Two stepped variable inlet loads were tested (60-111 and 16-102 gH2S-S m-3 h-1) under this type of control. The implementation of feedback control could enable the exploitation of biogas in a fuel cell, since the H2S concentrations were 15.1 ± 4.3 and 15.0 ± 3.4 ppmV. Finally, the anoxic biotrickling filter experienced partial denitrification and this implied a loss of the desulfurization effectiveness related to SO42- production.


Asunto(s)
Compuestos de Amonio , Sulfuro de Hidrógeno , Purificación del Agua , Biocombustibles , Reactores Biológicos , Filtración , Nitrificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA