Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem ; 458: 140193, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38959798

RESUMEN

In this study, we evaluated the potential for exogenous thymol to slow this decline by measuring the effects of thymol application on cell wall, energy, and membrane lipid metabolism. The results showed that thymol application improved the preservation of the total soluble solids, titratable acidity, decay rate, and anthocyanin content, and effectively inhibited the accumulation of O2·-, H2O2, and malondialdehyde in blueberries during storage. Thymol application also effectively maintained fruit firmness, cell wall structure, and energy levels, while delaying the degradation of membrane phospholipids and unsaturated fatty acids during the storage of post-harvest blueberries. Therefore, exogenous thymol can maintain the quality of blueberry fruits by regulating energy and membrane lipid metabolism and reducing cell wall degradation. Thus, thymol-treatment could be a suitable biocontrol agent for maintaining blueberry quality and extending blueberry fruit storage life.

2.
Sci Data ; 11(1): 707, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942755

RESUMEN

The fraction of absorbed photosynthetically active radiation (FPAR) is an essential biophysical parameter that characterizes the structure and function of terrestrial ecosystems. Despite the extensive utilization of several satellite-derived FPAR products, notable temporal inconsistencies within each product have been underscored. Here, the new generation of the GIMMS FPAR product, GIMMS FPAR4g, was developed using a combination of a machine learning algorithm and a pixel-wise multi-sensor records integration approach. PKU GIMMS NDVI, which eliminates the orbital drift and sensor degradation issues, was used as the data source. Comparisons with ground-based measurements indicate root mean square errors ranging from 0.10 to 0.14 with R-squared ranging from 0.73 to 0.87. More importantly, our product demonstrates remarkable spatiotemporal coherence and continuity, revealing a persistent terrestrial darkening over the past four decades (0.0004 yr-1, p < 0.001). The GIMMS FPAR4g, available for half-month intervals at a spatial resolution of 1/12° from 1982 to 2022, promises to be a valuable asset for in-depth analyses of vegetation structures and functions spanning the last 40 years.


Asunto(s)
Fotosíntesis , Ecosistema , Aprendizaje Automático
3.
Foods ; 13(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731658

RESUMEN

Parkinson's disease (PD), the second most common neurodegenerative disorder, is linked to α-synuclein (α-Syn) aggregation. Despite no specific drug being available for its treatment, curcumin, from the spice turmeric, shows promise. However, its application in PD is limited by a lack of understanding of its anti-amyloidogenic mechanisms. In this study, we first reconstructed the liquid-liquid phase separation (LLPS) of α-Syn in vitro under different conditions, which may be an initial step in entraining the pathogenic aggregation. Subsequently, we evaluated the effects of curcumin on the formation of droplets, oligomers, and aggregated fibers during the LLPS of α-synuclein, as well as its impact on the toxicity of aggregated α-synuclein to cultured cells. Importantly, we found that curcumin can inhibit amyloid formation by inhibiting the occurrence of LLPS and the subsequent formation of oligomers of α-Syn in the early stages of aggregation. Finally, the molecular dynamic simulations of interactions between α-Syn decamer fibrils and curcumin showed that van der Waal's interactions make the largest contribution to the anti-aggregation effect of curcumin. These results may help to clarify the mechanism by which curcumin inhibits the formation of α-Syn aggregates during the development of PD.

4.
Comput Methods Programs Biomed ; 250: 108191, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677079

RESUMEN

BACKGROUND AND OBJECTIVE: Enhanced external counterpulsation (EECP) is a mechanically assisted circulation technique widely used in the rehabilitation and management of ischemic cardiovascular diseases. It contributes to cardiovascular functions by regulating the afterload of ventricle to improve hemodynamic effects, including increased diastolic blood pressure at aortic root, increased cardiac output and enhanced blood perfusion to multiple organs including coronary circulation. However, the effects of EECP on the coupling of the ventricle and the arterial system, termed ventricular-arterial coupling (VAC), remain elusive. We aimed to investigate the acute effect of EECP on the dynamic interaction between the left ventricle and its afterload of the arterial system from the perspective of ventricular output work. METHODS: A neural network assisted optimization algorithm was proposed to identify the ordinary differential equation (ODE) relation between aortic root blood pressure and flow rate. Based on the optimized order of ODE, a lumped parameter model (LPM) under EECP was developed taking into consideration of the simultaneous action of cardiac and EECP pressure sources. The ventricular output work, in terms of aortic pressure and flow rate cooperated with the LPM, was used to characterize the VAC of ventricle and its afterload. The VAC subjected to the principle of minimal ventricular output work was validated by solving the Euler-Poisson equation of cost function, ultimately determining the waveforms of aortic pressure and flow rate. RESULTS: A third-order ODE can precisely describe the hemodynamic relationship between aortic pressure and flow rate. An optimized dual-source LPM with three energy-storage elements has been constructed, showing the potential in probing VAC under EECP. The LPM simulation results demonstrated that the VAC in terms of aortic pressure and flow rate yielded to the minimal ventricular output work under different EECP pressures. CONCLUSIONS: The ventricular-arterial coupling under EECP is subjected to the minimal ventricular output work, which can serve as a criterion for determining aortic pressure and flow rate. This study provides insight for the understanding of VAC and has the potential in characterizing the performance of the ventricular and arterial system under EECP.


Asunto(s)
Algoritmos , Contrapulsación , Ventrículos Cardíacos , Hemodinámica , Modelos Cardiovasculares , Humanos , Contrapulsación/métodos , Gasto Cardíaco , Arterias/fisiología , Presión Sanguínea , Simulación por Computador , Aorta/fisiología , Redes Neurales de la Computación
5.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38203794

RESUMEN

Stabilization of a G-quadruplex (G4) in the promotor of the c-MYC proto-oncogene leads to inhibition of gene expression, and it thus represents a potentially attractive new strategy for cancer treatment. However, most G4 stabilizers show little selectivity among the many G4s present in the cellular complement of DNA and RNA. Intriguingly, a crescent-shaped cell-penetrating thiazole peptide, TH3, preferentially stabilizes the c-MYC G4 over other promotor G4s, but the mechanisms leading to this selective binding remain obscure. To investigate these mechanisms at the atomic level, we performed an in silico comparative investigation of the binding of TH3 and its analogue TH1 to the G4s from the promotors of c-MYC, c-KIT1, c-KIT2, and BCL2. Molecular docking and molecular dynamics simulations, combined with in-depth analyses of non-covalent interactions and bulk and per-nucleotide binding free energies, revealed that both TH3 and TH1 can induce the formation of a sandwich-like framework through stacking with both the top and bottom G-tetrads of the c-MYC G4 and the adjacent terminal capping nucleotides. This framework produces enhanced binding affinities for c-MYC G4 relative to other promotor G4s, with TH3 exhibiting an outstanding binding priority. Van der Waals interactions were identified to be the key factor in complex formation in all cases. Collectively, our findings fully agree with available experimental data. Therefore, the identified mechanisms leading to specific binding of TH3 towards c-MYC G4 provide valuable information to guide the development of new selective G4 stabilizers.


Asunto(s)
Genes myc , Simulación del Acoplamiento Molecular , Péptidos/farmacología , Tiazoles/farmacología
6.
Plant Cell ; 35(7): 2552-2569, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-36977631

RESUMEN

Ralstonia solanacearum is a devastating soil-borne bacterial pathogen capable of infecting many plant species, including tomato (Solanum lycopersicum). However, the perception of Ralstonia by the tomato immune system and the pathogen's counter-defense strategy remain largely unknown. Here, we show that PehC, a specific exo-polygalacturonase secreted by Ralstonia, acts as an elicitor that triggers typical immune responses in tomato and other Solanaceous plants. The elicitor activity of PehC depends on its N-terminal epitope, and not on its polygalacturonase activity. The recognition of PehC specifically occurs in tomato roots and relies on unknown receptor-like kinase(s). Moreover, PehC hydrolyzes plant pectin-derived oligogalacturonic acids (OGs), a type of damage-associated molecular pattern (DAMP), which leads to the release of galacturonic acid (GalA), thereby dampening DAMP-triggered immunity (DTI). Ralstonia depends on PehC for its growth and early infection and can utilize GalA as a carbon source in the xylem. Our findings demonstrate the specialized and dual functions of Ralstonia PehC, which enhance virulence by degrading DAMPs to evade DTI and produce nutrients, a strategy used by pathogens to attenuate plant immunity. Solanaceous plants have evolved to recognize PehC and induce immune responses, which highlights the significance of PehC. Overall, this study provides insight into the arms race between plants and pathogens.


Asunto(s)
Ralstonia solanacearum , Solanum lycopersicum , Virulencia , Poligalacturonasa , Proteínas Bacterianas , Enfermedades de las Plantas/microbiología
7.
Front Plant Sci ; 13: 994154, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204058

RESUMEN

The AlkB homologs (ALKBH) gene family regulates N6-methyladenosine (m6A) RNA methylation and is involved in plant growth and the abiotic stress response. Poplar is an important model plant for studying perennial woody plants. Poplars typically have a long juvenile period of 7-10 years, requiring long periods of time for studies of flowering or mature wood properties. Consequently, functional studies of the ALKBH genes in Populus species have been limited. Based on AtALKBHs sequence similarity with Arabidopsis thaliana, 23 PagALKBHs were identified in the genome of the poplar 84K hybrid genotype (P. alba × P. tremula var. glandulosa), and gene structures and conserved domains were confirmed between homologs. The PagALKBH proteins were classified into six groups based on conserved sequence compared with human, Arabidopsis, maize, rice, wheat, tomato, barley, and grape. All homologs of PagALKBHs were tissue-specific; most were highly expressed in leaves. ALKBH9B and ALKBH10B are m6A demethylases and overexpression of their homologs PagALKBH9B and PagALKBH10B reduced m6A RNA methylation in transgenic lines. The number of adventitious roots and the biomass accumulation of transgenic lines decreased compared with WT. Therefore, PagALKBH9B and PagALKBH10B mediate m6A RNA demethylation and play a regulatory role in poplar growth and development. Overexpression of PagALKBH9B and PagALKBH10B can reduce the accumulation of H2O2 and oxidative damage by increasing the activities of SOD, POD, and CAT, and enhancing protection for Chl a/b, thereby increasing the salt tolerance of transgenic lines. However, overexpression lines were more sensitive to drought stress due to reduced proline content. This research revealed comprehensive information about the PagALKBH gene family and their roles in growth and development and responsing to salt stress of poplar.

8.
Front Chem ; 10: 934032, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910744

RESUMEN

The acceptance of kiwifruit by consumers is significantly affected by its slow ripening and susceptibility to deterioration. Ready-to-eat "Guichang" kiwifruit and its preparation technology were studied by the regulation of ethylene and 1-MCP. Harvested kiwifruits were treated with 100-2000 µl L-1ethylene for 36 h (20°C) and then treatment with 0-0.5 µl L-1 1-MCP. The results showed that the preservation effect of 0.5 µl L-1 1-MCP is inefficient when the soluble solid content of kiwifruit exceeded 15%. The ethylene-treated fruits reached an "edible window" after 24 h, but a higher concentration of ethylene would not further improve ripening efficiency, while the optimal ethylene concentration was 250 µl L-1. Moreover, after 250 µl L-1 ethylene treatment, 0.5 µl L-1 1-MCP would effectively prolong the "edible window" of fruits by approximately 19 days. The volatile component variety and ester content of 0.5 µl L-1 1-MCP-treated fruits were not different from those of the CK group. Principal component analysis and hierarchical cluster analysis indicated that the eating quality of fruits treated with 0.5 µl L-1 1-MCP was similar to that of fruits treated with ethylene. Consequently, ready-to-eat "Guichang" kiwifruit preparation includes ripening with 250 µl L-1 (20°C, 36 h) ethylene without exceeding the 1-MCP threshold and then treated with 0.5 µl L-1 1-MCP (20°C, 24 h). This study highlights the first development of a facile and low-cost preparation technology for ready-to-eat "Guichang" kiwifruit, which could reduce the time for harvested kiwifruit to reach the "edible window" and prolong the "edible window" of edible kiwifruit.

9.
Front Chem ; 10: 957581, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35942476

RESUMEN

In this study, to investigate the physiological and molecular mechanisms of melatonin inhibiting the postharvest rot of blueberry fruits, blueberry fruits were dipped in 0.3 mmol L-1 melatonin solution for 3 min and stored at 0°C for 80 days. The results indicated that melatonin did not significantly (p > 0.05) inhibit the mycelial growth or spore germination of Alternaria alternata, Botrytis cinerea, and Colletotrichum gloeosporioides. In addition, an in vivo study revealed that melatonin treatment increased the enzymatic activities of phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), polyphenol oxidase (PPO), and peroxidase (POD) in fruits. Furthermore, genes related to jasmonic acid synthesis were upregulated (VaLOX, VaAOS, and VaAOC), as were those related to pathogenesis-related proteins (VaGLU and VaCHT) and phenylpropane metabolism (VaPAL, VaC4H, Va4CL, VaCAD, VaPPO, and VaPOD), which promoted the accumulation of total phenols, flavonoids, anthocyanins, and lignin in the fruits. These results suggest that melatonin enhances the postharvest disease resistance of blueberry fruits by mediating the jasmonic acid signaling pathway and the phenylpropane pathway.

10.
Front Vet Sci ; 9: 921907, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35836498

RESUMEN

To date, there is no effective vaccine or antiviral therapy available to prevent or treat African swine fever virus (ASFV) infections. ASFV gene deletion strains have been proposed as promising anti-ASFV vaccine candidates. In recent years, most ASFV gene deletion strains worldwide have been recombinant strains expressing EGFP or mCherry as markers. Therefore, in this study, a new triplex real-time PCR (RT-PCR) method was established for the broad and accurate differentiation of ASFV wild-type vs. gene deletion strains. We designed three pairs of primers and probes to target B646L, EGFP, and mCherry, and RT-PCR was used to detect these three genes simultaneously. The detection method prevented non-specific amplification of porcine reproductive and respiratory syndrome virus, porcine epidemic diarrhea virus, circovirus type 2, pseudorabies virus, and classical swine fever virus genes. The minimum copy number of standard plasmid DNA detected using triplex RT-PCR was 9.49, 15.60, and 9.60 copies for B646L, EGFP, and mCherry, respectively. Importantly, of the 1646 samples analyzed in this study, 67 were positive for ASFV, all corresponding to the wild-type virus. Overall, our data show that the triplex RT-PCR method established in this study can specifically identify both ASFV wild-type and gene deletion strains.

11.
Front Plant Sci ; 13: 922007, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845628

RESUMEN

Chinese fir [Cunninghamia lanceolata (Lamb.) Hook] is an important evergreen coniferous tree species that is widely distributed in many southern provinces of China and has important economic value. The Chinese fir accounts for 1/4 and 1/3 of the total artificial forest area and stock volume, respectively. Red-heart Chinese fir is popular in the market because of its high density and red heartwood. The long-growth cycle hindered the breeding process of Chinese fir, while molecular marker-assisted breeding could accelerate it. However, Chinese fir, a perennial conifer species, has a large genome, which has not yet been published. In this study, the growth-related traits and secondary metabolite contents of red- and white-heart Chinese fir were measured and found to be different between them. There are extremely significant differences among growth-related traits (p < 0.001), but secondary metabolite contents have different correlations due to differences in chemical structure. Moreover, genotype effect analysis of the substantially correlated single nucleotide polymorphisms (SNPs) revealed that most of the loci related to each growth-related traits were different from each other, indicating a type specificity of the genes regulated different growth-related traits. Furthermore, among the loci related to secondary metabolite contents, nine loci associated with multiple metabolite phenotypes such as Marker21022_4, Marker21022_172, Marker24559_31, Marker27425_37, Marker20748_85, Marker18841_115, Marker18841_198, Marker65846_146, and Marker21486_163, suggesting the presence of pleiotropic genes. This study identified the potential SNP markers associated with secondary metabolites in Chinese fir, thus setting the basis for molecular marker-assisted selection.

12.
Front Plant Sci ; 13: 898994, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712556

RESUMEN

In this study, the fungus Penicillium sp. was isolated from rotting postharvest blueberry fruits at different storage stages and identified into genera. Inoculation of this strain on the surface of fresh fruits was able to cause rotting. The strain was then used as a reference strain to test the chemical control effect of ozone fumigation during storage. The results showed that ozone fumigation had an obvious inhibitory effect on Penicillium sp. in a dose- and time-dependent manner. Meanwhile, ozone fumigation treatment could prevent the loss of fruit firmness, slow down the decrease of soluble solids, total phenolics, and anthocyanins, and maintain a lower activity of PPO and higher activities of POD and CAT. As far as we know, this is the first report on the effects of ozone fumigation on the postharvest pathogenic fungi Penicillium sp. and on the storage quality of postharvest blueberry collected from Majiang County, Guizhou province, China.

13.
Int J Mol Sci ; 23(9)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35563481

RESUMEN

Vegetative propagation is an important method of reproduction and rejuvenation in horticulture and forestry plants with a long lifespan. Although substantial juvenile clones have been obtained through the vegetative propagation of ornamental plants, the molecular factors that regulate rejuvenation during vegetative propagation are largely unknown. Here, root sprouting and root cutting of Robinia pseudoacacia were used as two vegetative propagation methods. From two consecutive years of transcriptome data from rejuvenated seedlings and mature trees, one gene module and one miRNA module were found to be specifically associated with rejuvenation during vegetative propagation through weighted gene co-expression network analysis (WGCNA). In the gene module, a transcription factor-encoding gene showed high expression during vegetative propagation, and it was subsequently named RpTOE1 through homology analysis. Heterologous overexpression of RpTOE1 in wild-type Arabidopsis and toe1 toe2 double mutants prolonged the juvenile phase. The qRT-PCR results predicted RpFT to be a downstream gene that was regulated by RpTOE1. Further investigation of the protein-DNA interactions using yeast one-hybrid, electrophoretic mobility shift, and dual luciferase reporter assays confirmed that RpTOE1 negatively regulated RpFT by binding directly to the TOE binding site (TBS)-like motif on its promoter. On the basis of these results, we showed that the high expression of RpTOE1 during vegetative propagation and its inhibition of RpFT played a key role in the phase reversal of R. pseudoacacia.


Asunto(s)
Arabidopsis , Robinia , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas , Rejuvenecimiento , Reproducción , Robinia/genética , Plantones/genética
14.
Front Plant Sci ; 13: 854716, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463434

RESUMEN

Red-heart Chinese fir (Cunninghamia lanceolata) has the advantages of high density and attractive color, making it popular in the market. To date, most studies about stems of woody plants have only been reported at the cytological level because of few living cells. In this study, the xylem was successfully partitioned into three effective sampling areas: sapwood, transition zone, and heartwood. Secondary metabolites, cell survival, and differentially expressed genes in the three sampling areas were, respectively, investigated. First, we identified the phenylpropanoid and flavonoid pathways closely related to color. Based on the chemical structure of secondary metabolites in pathways, two notable directions had been found. Luteolin's glycosylation products might be the key substances that regulated the color of heartwood in red-heart Chinese fir because of the 1,000-fold difference between red-heart and white-heart. We also found pinocembrin and pinobanksin in Chinese fir, which were rarely reported before. At the cytological level, we believed that the transition zone of red-heart Chinese fir was a critical region for color production because of the fewer living ray parenchyma cells. In addition, transcriptome and quantitative reverse transcription PCR (qRT-PCR) proved that genes regulating the entire phenylpropanoid pathway, upstream of the flavonoid pathway, and some glycosyltransferases were significantly upregulated in the transition zone of red-heart and then colored the heartwood by increasing metabolites. This is the first report on the color-related secondary metabolites regulated by differential genes in red-heart Chinese fir. This study will broaden our knowledge on the effects of metabolites on coloring woody plant xylems.

15.
Plant Cell ; 34(5): 1666-1683, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35043960

RESUMEN

The bacterial pathogen Ralstonia solanacearum causes wilt disease on Arabidopsis thaliana and tomato (Solanum lycopersicum). This pathogen uses type III effectors to inhibit the plant immune system; however, how individual effectors interfere with plant immune responses, including transcriptional reprograming, remain elusive. Here, we show that the type III effector RipAB targets Arabidopsis TGACG SEQUENCE-SPECIFIC BINDING PROTEIN (TGA) transcription factors, the central regulators of plant immune gene regulation, via physical interaction in the nucleus to dampen immune responses. RipAB was required for R. solanacearum virulence on wild-type tomato and Arabidopsis but not Arabidopsis tga1 tga4 and tga2 tga5 tga6 mutants. Stable expression of RipAB in Arabidopsis suppressed the pathogen-associated molecular pattern-triggered reactive oxygen species (ROS) burst and immune gene induction as well as salicylic acid (SA) regulons including RBOHD and RBOHF, responsible for ROS production, all of which were phenocopied by the tga1 tga4 and tga2 tga5 tga6 mutants. We found that TGAs directly activate RBOHD and RBOHF expression and that RipAB inhibits this through interfering with the recruitment of RNA polymerase II. These results suggest that TGAs are the bona fide and major virulence targets of RipAB, which disrupts SA signaling by inhibiting TGA activity to achieve successful infection.


Asunto(s)
Arabidopsis , Ralstonia solanacearum , Solanum lycopersicum , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/genética , Ralstonia solanacearum/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Front Physiol ; 11: 573676, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192575

RESUMEN

Coccidiosis is a major hazard to the chicken industry, but the host's immune response to coccidiosis remains unclear. Here, we performed Eimeria coccidia challenge in 28-day-old ROSS 308 broilers and selected the bursa from the three most severely affected individuals and three healthy individuals for RNA sequencing. We obtained 347 DEGs from RNA-seq and found that 7 upregulated DEGs were enriched in Cytokine-cytokine receptor interaction pathway. As the DEGs with the highest expression abundance in these 7 genes, TNFRSF6B was speculated to participate in the process of host's immune response to coccidiosis. It is showed that TNFRSF6B can polarize macrophages to M1 subtype and promote inflammatory cytokines expression. In addition, the expression of TNFRSF6B suppressed HD11 cells apoptosis by downregulating Fas signal pathway. Besides, TNFRSF6B-mediated macrophages immunity activation can be reversed by apoptosis. Overall, our study indicates that TNFRSF6B upregulated in BAE, is capable of aggravating the inflammatory response by inhibiting macrophages apoptosis via downregulating Fas signal pathway, which may participate in host's immune response to coccidiosis.

17.
Int J Biol Macromol ; 151: 870-877, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32084489

RESUMEN

A polysaccharide JUYP was isolated and purified from Umbilicaria yunnana. The detailed structure of JUYP was studied using gas chromatography (GC), Fourier transform infrared spectroscopy (FTIR), methylation-GC-MS, nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM). A homogeneous polysaccharide JUYP was obtained with the yield of 21.2% and average molecular weight (Mw) of 577 kDa. Monosaccharide composition analysis indicated that JUYP was composed of glucose, galactose and mannose with a molar ratio of 2.3:1:0.7. Structural analyses demonstrated that the dominate components in JUYP were 6-ß-D-Glcp, and other sugar residues included 2,4-ß-D-Manp and T-ß-D-Galf. TEM images further revealed JUYP was a linear branched molecule with entangled chains. Based on the anti-inflammatory assays, 1 µg/mL of JUYP exhibited good inhibitory effects on TNF-α, IL-6, IL-1ß and COX-2 mRNA expressions in LPS-stimulated RAW 264.7 cells, while the inhibitory effects (87.8% for mRNA, 55.89% for protein) of JUYP on IL-1ß expressions were more significant than that of dexamethasone (DXMS, 61.6% for mRNA, 35.15% for protein) (p<0.01).


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Ascomicetos/química , Polisacáridos Fúngicos/química , Polisacáridos Fúngicos/farmacología , Animales , Fenómenos Químicos , Citocinas/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Hidrólisis , Mediadores de Inflamación/metabolismo , Metilación , Ratones , Estructura Molecular , Oxidación-Reducción , Células RAW 264.7 , Análisis Espectral , Relación Estructura-Actividad
18.
Int J Biometeorol ; 64(4): 701-711, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31925517

RESUMEN

Even though existing remote-sensing-based drought indices are widely used in many different types of ecosystems, their utility has not been widely assessed in tropical dry forests (TDFs). The aim of this study is to evaluate the performance of three remote-sensing-based drought indices, the Vegetation Condition Index (VCI), Temperature Condition Index (TCI), and Vegetation Health Index (VHI), for meteorological drought monitoring in TDFs using the moderate-resolution imaging spectroradiometer (MODIS) products. The correlation between the VCI, TCI, and VHI and multiple time scales of the Standardized Precipitation Index (SPI) (1, 3, 6, 9, 12, 15, 18, 21, 24 months) for each month (January to December) and each season (dry season, dry-to-wet season, wet season and wet-to-dry season) were conducted using the Pearson correlation analysis. We also correlated year-to-year changes of satellite-based drought indices with the changes of the in situ annual SPI (A_SPI) which provides annual information on the mean meteorological drought. The analysis reveals that the ability of these remote-sensing-based drought indices for meteorological drought monitoring varies with timing, and the TCI outperforms the VCI and VHI in terms of seasonal and annual scale. These remote-sensing indices performed well in monitoring meteorological drought in the dry season, poorly in the in the dry-to-wet season, and moderately in the wet season. The TCI performed best in monitoring meteorological drought in the wet-to-dry period, followed by VHI, whereas the VCI performed worst. All of these remote-sensing-based drought indices failed to detect drought in May during the green-up period and in September, October, and November when the water content in the root regions was abundant. Our results indicate that the evapotranspiration of TDFs is more sensitive than canopy greenness to detect meteorological drought. Results from this study increase the ability to provide real-time drought monitoring and early warnings of drought in TDFs.


Asunto(s)
Sequías , Ecosistema , Bosques , Imágenes Satelitales , Estaciones del Año
19.
Future Oncol ; 15(10): 1105-1114, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30880453

RESUMEN

AIM: To assess the independent determinants of tumor-induced mortality in different age subgroups after considering competing risk (CR). METHODS: Data were extracted from the SEER database. The independent determinants of tumor-induced mortality were defined by CR analysis and validated by conditional inference trees. A CR nomogram was created based on the proportional subdistribution hazard model. RESULTS: The different age subgroups had their own independent determinants of tumor-induced mortality. Using these variables, a CR nomogram was built with good discrimination and calibration. CONCLUSION: When conducting population-based cohort studies, a CR analysis is recommended for cancers with short survival and high mortality. A CR nomogram represents the first attempt at a predictive model for quantifying tumor-induced mortality.


Asunto(s)
Glioblastoma/mortalidad , Nomogramas , Medición de Riesgo , Adolescente , Adulto , Factores de Edad , Anciano , Terapia Combinada , Femenino , Estudios de Seguimiento , Glioblastoma/patología , Glioblastoma/terapia , Humanos , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Pronóstico , Estudios Retrospectivos , Programa de VERF , Tasa de Supervivencia , Adulto Joven
20.
J Agric Food Chem ; 66(49): 12967-12977, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30415542

RESUMEN

We investigated the cytoprotective effects of anthocyanins in Aronia melanocarpa against apoptosis induced by Aß1-42, a key mediator of AD pathophysiology. We measured intracellular calcium with a colorimetric kit, cellular apoptosis with DAPI, intracellular ROS with the fluorescent marker 2,3-dimethoxy-1,4-naphthoquinone, mitochondrial membrane potential with JC-1, and ATP with a colorimetric kit. Gene transcription and protein expression levels of calmodulin, cytochrome c, caspase-9, cleaved caspase-3, Bcl-2, and Bax were analyzed by RT-PCR and Western blotting. The results showed that pretreatment with anthocyanins significantly inhibited Aß1-42-induced apoptosis, decreased intracellular calcium and ROS, and increased ATP and mitochondrial membrane potential. RT-PCR and Western blotting revealed that anthocyanins upregulated the gene transcription and protein expression of calmodulin and Bcl-2 and downregulated those of cytochrome c, caspase-9, cleaved caspase-3, and Bax. A. melanocarpa anthocyanins protected SH-SY5Y cells against Aß1-42-induced apoptosis by regulating Ca2+ homeostasis and apoptosis-related genes and inhibiting mitochondrial dysfunction.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Antocianinas/farmacología , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Mitocondrias/efectos de los fármacos , Photinia/química , Adenosina Trifosfato/metabolismo , Enfermedad de Alzheimer , Antocianinas/aislamiento & purificación , Apoptosis/genética , Calcio/análisis , Línea Celular Tumoral , Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/fisiología , Neuroblastoma , Fármacos Neuroprotectores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...