Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 180: 108968, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39106670

RESUMEN

BACKGROUND: Since the 2016 WHO guidelines, glioma diagnosis has entered an era of integrated diagnosis, combining tissue pathology and molecular pathology. The WHO has focused on promoting the application of molecular diagnosis in the classification of central nervous system tumors. Genetic information such as IDH1 and 1p/19q are important molecular markers, and pathological grading is also a key clinical indicator. However, obtaining genetic pathology labels is more costly than conventional MRI images, resulting in a large number of missing labels in realistic modeling. METHOD: We propose a training strategy based on label encoding and a corresponding loss function to enable the model to effectively utilize data with missing labels. Additionally, we integrate a graph model with genes and pathology-related clinical prior knowledge into the ResNet backbone to further improve the efficacy of diagnosis. Ten-fold cross-validation experiments were conducted on a large dataset of 1072 patients. RESULTS: The classification area under the curve (AUC) values are 0.93, 0.91, and 0.90 for IDH1, 1p/19q status, and grade (LGG/HGG), respectively. When the label miss rate reached 59.3 %, the method improved the AUC by 0.09, 0.10, and 0.04 for IDH1, 1p/19q, and pathological grade, respectively, compared to the same backbone without the missing label strategy. CONCLUSIONS: Our method effectively utilizes data with missing labels and integrates clinical prior knowledge, resulting in improved diagnostic performance for glioma genetic and pathological markers, even with high rates of missing labels.


Asunto(s)
Neoplasias Encefálicas , Glioma , Imagen por Resonancia Magnética , Humanos , Glioma/diagnóstico por imagen , Glioma/genética , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Interpretación de Imagen Asistida por Computador/métodos , Femenino , Masculino
2.
Infect Drug Resist ; 16: 6911-6922, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928603

RESUMEN

Bacteria communicate with their surroundings through diverse secretory systems, and the recently discovered Type VI Secretion System (T6SS) has gained significant attention. Klebsiella pneumoniae (K. pneumoniae), an opportunistic pathogen known for causing severe infections in both hospital and animal settings, possesses this intriguing T6SS. This system equips K. pneumoniae with a formidable armory of protein-based weaponry, enabling the delivery of toxins into neighboring cells, thus granting a substantial competitive advantage. Remarkably, the T6SS has also been associated with K. pneumoniae's ability to form biofilms and acquire resistance against antibiotics. However, the precise effects of the T6SS on K. pneumoniae's functions remain inadequately studied, despite research efforts to understand the intricacies of these mechanisms. This comprehensive review aims to provide an overview of the current knowledge regarding the biological functions and regulatory mechanisms of the T6SS in K. pneumoniae.

3.
Biomed Res Int ; 2022: 9775473, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237692

RESUMEN

BACKGROUND: New Wenshen Shengjing Decoction (NWSSJD), a traditional Chinese compound medicine, has significant effect on spermatogenesis disorder and can significantly improve sperm quality. Many components in NWSSJD can induce epigenetic modifications of different types of cells. It is not yet known whether they can cause epigenetic modifications in sperm or early embryos. OBJECTIVE: This study investigated the effect of NWSSJD on mouse early embryonic development and its regulation of H3K4me3 in mouse sperm and early embryos. METHODS: Spermatogenesis disorder was induced in male mice with CPA (cyclophosphamide). NWSSJD was administrated for 30 days. Then, the male mice were mated with the female mice with superovulation, and the embryo degeneration rate of each stage was calculated. Immunofluorescence staining was used to detect the expression of H3K4me3 in sperm and embryos at various stages. Western blotting was performed to detect methyltransferase SETD1B expression. The expressions of development-related genes (OCT-4, NANOG, and CDX2) and apoptosis-related genes (BCL-2 and p53) were measured with qRT-PCR. RESULTS: Compared with the CPA group, NWSSJD significantly reduced the H3K4me3 level in sperms, significantly increased the number of normal early embryos (2-cell embryos, 3-4-cell embryos, 8-16-cell embryos, and blastocysts) per mouse, and reduced the degeneration rate of the embryos. The expression levels of H3K4me3 and methyltransferase SETD1B in early embryos were significantly elevated by NWSSJD. Additionally, NWSSJD significantly promoted BCL-2 expression, while reducing p53 expression, thus inhibiting embryonic cell apoptosis. Moreover, the expressions of development-related genes OCT-4 and CDX2 were significantly increased by NWSSJD, but NANOG expression had no significant difference. CONCLUSION: NWSSJD may promote early embryonic development possibly by maintaining low H3K4me3 levels in sperms and normal H3K4me3 modification in early embryos and by inhibiting embryonic cell apoptosis.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Desarrollo Embrionario/efectos de los fármacos , Histonas/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Blastocisto/metabolismo , Embrión de Mamíferos/metabolismo , Femenino , Masculino , Ratones , Espermatozoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...