Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurosci Res ; 93(4): 572-83, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25425242

RESUMEN

Restoration of neuronal functions by outgrowths regenerating at ∼1 mm/day from the proximal stumps of severed peripheral nerves takes many weeks or months, if it occurs at all, especially after ablation of nerve segments. Distal segments of severed axons typically degenerate in 1-3 days. This study shows that Wallerian degeneration can be prevented or retarded, and lost behavioral function can be restored, following ablation of 0.5-1-cm segments of rat sciatic nerves in host animals. This is achieved by using 0.8-1.1-cm microsutured donor allografts treated with bioengineered solutions varying in ionic and polyethylene glycol (PEG) concentrations (modified PEG-fusion procedure), being careful not to stretch any portion of donor or host sciatic nerves. The data show that PEG fusion permanently restores axonal continuity within minutes, as initially assessed by action potential conduction and intracellular diffusion of dye. Behavioral functions mediated by the sciatic nerve are largely restored within 2-4 weeks, as measured by the sciatic functional index. Increased restoration of sciatic behavioral functions after ablating 0.5-1-cm segments is associated with greater numbers of viable myelinated axons within and distal to PEG-fused allografts. Many such viable myelinated axons are almost certainly spared from Wallerian degeneration by PEG fusion. PEG fusion of donor allografts may produce a paradigm shift in the treatment of peripheral nerve injuries.


Asunto(s)
Aloinjertos/fisiología , Trastornos Mentales/etiología , Trastornos Mentales/cirugía , Polietilenglicoles/uso terapéutico , Recuperación de la Función/fisiología , Neuropatía Ciática/complicaciones , Trasplante Homólogo/métodos , Potenciales de Acción/fisiología , Análisis de Varianza , Animales , Axones/patología , Modelos Animales de Enfermedad , Actividad Motora , Fibras Nerviosas Mielínicas/patología , Ratas , Ratas Sprague-Dawley , Estadística como Asunto , Factores de Tiempo
2.
Angiogenesis ; 4(1): 61-70, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11824380

RESUMEN

CM101, an anti-pathoangiogenic polysaccharide derived from group B streptococcus, has been shown to inhibit inflammatory angiogenesis and accelerate wound healing in a mouse model and minimize scarring/gliosis following spinal cord injury. To evaluate the in vivo effects of CM101 on cutaneous wound healing in the pig, intravenously delivered CM101 or placebo vehicle was given 1 h after cutaneous wounding and again at 72 h after injury. Tissues from partial-thickness and full-thickness excisions were collected at days 4 and 7 after wounding and evaluated for a variety of standard healing parameters. Both types of CM101-treated wounds showed significantly less evidence of inflammatory angiogenesis when assessed by macroscopic photography of the wound surface, qualitative histological observations, laser doppler perfusion imaging, and quantitative morphometric analysis of microvessel area from endothelium selectively immunostained for factor VIII. Resurfacing was accelerated in partial-thickness and full-thickness excisions that received two doses of CM101 as compared to the placebo-treated excisional wounds. Neodermal thickness was increased in CM101-treated wounds at day 4 and was slightly reduced in comparison with placebo by day 7. New collagen accumulation appeared to be unaffected by the CM101 treatment. Immunohistochemical staining using a polyclonal antisera directed against the anti-pathoangiogenic CM101 target protein HP59 on day 7 indicated a strong immunoreactivity on the microvessels present in the control wounds but not in wounds of the CM101-treated animals. In summary, the immunolocalization HP59 in the microvessels of the cutaneous wound bed in control but not in CM101 treated wounds suggests that CM101 inhibits the pathologic inflammatory angiogenesis accompanying the normal granulation processes. The net biological effect of inhibited inflammatory pathoangiogenesis is a diminished, suggested and purely physiologic, microvascular bed which translates into an enhanced rate of epithelial resurfacing and therefore an overall accelerated rate of wound repair.


Asunto(s)
Neovascularización Fisiológica/efectos de los fármacos , Polisacáridos Bacterianos/farmacología , Piel/efectos de los fármacos , Piel/lesiones , Cicatrización de Heridas/efectos de los fármacos , Animales , Antiinflamatorios no Esteroideos/farmacología , Tejido de Granulación/efectos de los fármacos , Tejido de Granulación/patología , Inflamación/prevención & control , Glicoproteínas de Membrana , Proteínas de la Membrana/metabolismo , Ratones , Microcirculación/efectos de los fármacos , Microcirculación/crecimiento & desarrollo , Transportadores de Anión Orgánico , Piel/irrigación sanguínea , Fenómenos Fisiológicos de la Piel , Porcinos , Simportadores
3.
Wound Repair Regen ; 8(2): 117-27, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10810038

RESUMEN

Expression constructs encoding a full-length cDNA encoding the human epidermal growth factor receptor, or reporter gene for green fluorescent protein or luciferase were coated onto gold particles and driven into porcine skin using a gene gun delivery system. Strategies for epidermal growth factor receptor boosting were tested in two types of wounds. For grafted wounds, intact porcine skin was pretreated by the introduction of the epidermal growth factor receptor expression construct 24 hours before its harvesting as a split-thickness skin graft. Partial-thickness excisional wound beds (donor sites) were transfected at the time of their creation. Wound healing parameters were subsequently tested in the presence or absence of excess epidermal growth factor ligand. Initial distributions of gene gun delivered gold particles as well as luciferase expression levels suggested that optimal skin penetrations and expression levels were achieved at 500 psi for intact epidermis and 300 psi for exposed wound beds. At 2 days after gene delivery, visualization of green fluorescent protein by fluorescence microscopy showed focal expression of green fluorescent protein at the advancing epithelial outgrowths found at wound edges or surviving epithelial remnants. Green fluorescent protein expression appeared transient since no green fluorescent protein was noted in specimens removed at 4 days after injury. Northern blot analysis on mRNA isolated from wounds 2 days after introduction of epidermal growth factor receptor coated gold particles by gene gun confirmed the expression of the human epidermal growth factor receptor transgene in both skin grafts and excisional wounds. Skin grafts showed subsequent biological responses to the introduction of excessive epidermal growth factor receptor as well as expression of the human epidermal growth factor receptor construct within healing epidermis. While control autografts (reporter gene treated, epidermal growth factor alone, placebo formula, no treatment) showed few 5'-bromodeoxyuridine-labeled cells, epidermal growth factor receptor autografts showed 5'-bromodeoxyuridine labeling of nearly every basal cell. Favorable wound healing outcomes were also shown within excisional wounds following in vivo boosting of epidermal growth factor receptor. Four days after receiving epidermal growth factor receptor particle growth factor receptor transgene. Application of topical epidermal growth factor ligand resulted in the highest percentage of resurfacing. Maximal re-epithelialization was noted in wound beds receiving both receptor boosting and excessive daily epidermal growth factor ligand. A modest increase in the thickness of the granulation tissue followed gene therapy with epidermal growth factor receptor. In summary these in vivo data suggest that it is possible to boost in vivo expression of a tyrosine kinase receptor during wound repair. Increased epidermal growth factor receptor expression has an integral impact on cell proliferation, rates of resurfacing and dermal components and merits consideration as a possible therapeutic agent.


Asunto(s)
Células Epidérmicas , Receptores ErbB/metabolismo , Expresión Génica , Trasplante de Piel/patología , Cicatrización de Heridas/fisiología , Animales , División Celular/genética , División Celular/fisiología , Técnicas de Cultivo , Modelos Animales de Enfermedad , Epidermis/crecimiento & desarrollo , Femenino , Técnicas de Transferencia de Gen , Genes Reporteros/fisiología , Masculino , Valores de Referencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sensibilidad y Especificidad , Trasplante de Piel/fisiología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA