Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Biochem Parasitol ; 208(1): 2-15, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27211241

RESUMEN

Signal transduction and kinomics have been rapidly expanding areas of investigation within the malaria research field. Here, we provide an overview of phosphosignalling pathways that operate in all stages of the Plasmodium life cycle. We review signalling pathways in the parasite itself, in the cells it invades, and in other cells of the vertebrate host with which it interacts. We also discuss the potential of these pathways as novel targets for antimalarial intervention.


Asunto(s)
Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Plasmodium/fisiología , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/metabolismo , Transducción de Señal , Animales , Humanos , Fosforilación
2.
PLoS One ; 10(12): e0139591, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26629826

RESUMEN

Casein kinase 1 (CK1) is a pleiotropic protein kinase implicated in several fundamental processes of eukaryotic cell biology. Plasmodium falciparum encodes a single CK1 isoform, PfCK1, that is expressed at all stages of the parasite's life cycle. We have previously shown that the pfck1 gene cannot be disrupted, but that the locus can be modified if no loss-of-function is incurred, suggesting an important role for this kinase in intra-erythrocytic asexual proliferation. Here, we report on the use of parasite lines expressing GFP- or His-tagged PfCK1 from the endogenous locus to investigate (i) the dynamics of PfCK1 localisation during the asexual cycle in red blood cells, and (ii) potential interactors of PfCK1, so as to gain insight into the involvement of the enzyme in specific cellular processes. Immunofluorescence analysis reveals a dynamic localisation of PfCK1, with evidence for a pool of the enzyme being directed to the membrane of the host erythrocyte in the early stages of infection, followed by a predominantly intra-parasite localisation in trophozoites and schizonts and association with micronemes in merozoites. Furthermore, we present strong evidence that a pool of enzymatically active PfCK1 is secreted into the culture supernatant, demonstrating that PfCK1 is an ectokinase. Our interactome experiments and ensuing kinase assays using recombinant PfCK1 to phosphorylate putative interactors in vitro suggest an involvement of PfCK1 in many cellular processes such as mRNA splicing, protein trafficking, ribosomal, and host cell invasion.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Eritrocitos/enzimología , Malaria/enzimología , Plasmodium falciparum/enzimología , Proteínas Protozoarias/metabolismo , Southern Blotting , Western Blotting , Quinasa de la Caseína I/genética , Clonación Molecular , Eritrocitos/parasitología , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Malaria/parasitología , Fosforilación , Proteínas Protozoarias/genética
3.
Biochim Biophys Acta ; 1834(7): 1336-45, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23462523

RESUMEN

Completion of the life cycle of malaria parasite requires a succession of developmental stages which vary greatly with respect to proliferation status, implying a tightly regulated control of the parasite's cell cycle, which remains to be understood at the molecular level. Progression of the eukaryotic cell cycle is controlled by members of mitotic kinase of the families CDK (cyclin-dependent kinases), Aurora, Polo and NIMA. Plasmodium parasites possess cyclin-dependent protein kinases and cyclins, which strongly suggests that some of the principles underlying cell cycle control in higher eukaryotes also operate in this organism. However, atypical features of Plasmodium cell cycle organization and important divergences in the composition of the cell cycle machinery suggest the existence of regulatory mechanisms that are at variance with those of higher eukaryotes. This review focuses on several recently described Plasmodium protein kinases related to the NIMA and Aurora kinase families and discusses their functional involvement in parasite's biology. Given their demonstrated essential roles in the erythrocytic asexual cycle and/or sexual stages, these enzymes represent novel potential drug targets for antimalarial intervention aiming at inhibiting parasite replication and/or blocking transmission of the disease. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Plasmodium falciparum/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Protozoarias/metabolismo , Antimaláricos/farmacología , Aurora Quinasas , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Malaria/parasitología , Malaria/prevención & control , Quinasa 1 Relacionada con NIMA , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética
4.
Nat Protoc ; 6(9): 1412-28, 2011 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-21886105

RESUMEN

We describe here a highly efficient procedure for conditional mutagenesis in Plasmodium. The procedure uses the site-specific recombination FLP-FRT system of yeast and targets the pre-erythrocytic stages of the rodent Plasmodium parasite P. berghei, including the sporozoite stage and the subsequent liver stage. The technique consists of replacing the gene under study by an FRTed copy (i.e., flanked by FRT sites) in the erythrocytic stages of a parasite clone that expresses the flip (FLP) recombinase stage-specifically--called the 'deleter' clone. We present the available deleter clones, which express FLP at different times of the parasite life cycle, as well as the schemes and tools for constructing new deleter parasites. We also outline and discuss the various strategies for exchanging a wild-type gene with an FRTed copy and for generating conditional gene knockout or knockdown parasite clones. Finally, we detail the protocol for obtaining sporozoites that lack a protein of interest and for monitoring sporozoite-specific DNA excision and depletion of the target protein. The protocol should allow the functional analysis of any essential protein in the sporozoite, liver stage or hepatic merozoite stages of rodent Plasmodium parasites.


Asunto(s)
Ingeniería Genética/métodos , Mutagénesis Sitio-Dirigida/métodos , Plasmodium berghei/genética , Animales , Anopheles/parasitología , Técnicas de Inactivación de Genes , Ratones , Ratas , Ratas Wistar , Recombinación Genética , Esporozoítos/fisiología
5.
Cell Host Microbe ; 5(4): 386-96, 2009 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-19380117

RESUMEN

We describe here an efficient method for conditional gene inactivation in malaria parasites that uses the Flp/FRT site-specific recombination system of yeast. The method, developed in Plasmodium berghei, consists of inserting FRT sites in the chromosomal locus of interest in a parasite clone expressing the Flp recombinase via a developmental stage-specific promoter. Using promoters active in mosquito midgut sporozoites or salivary gland sporozoites to drive expression of Flp or its thermolabile variant, FlpL, we show that excision of the DNA flanked by FRT sites occurs efficiently at the stage of interest and at undetectable levels in prior stages. We applied this technique to conditionally silence MSP1, a gene essential for merozoite invasion of erythrocytes. Silencing MSP1 in sporozoites impaired subsequent merozoite formation in the liver. Therefore, MSP1 plays a dual role in the parasite life cycle, acting both in liver and erythrocytic parasite stages.


Asunto(s)
Eliminación de Gen , Biología Molecular/métodos , Mutagénesis , Plasmodium berghei/genética , Animales , ADN Nucleotidiltransferasas/genética , ADN Nucleotidiltransferasas/metabolismo , Recombinación Genética
6.
Nucleic Acids Res ; 33(20): e174, 2005 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-16284199

RESUMEN

After the deciphering of the genome sequences of several Plasmodium species, efforts must turn to elucidating gene function and identifying essential gene products. However, random approaches are lacking and gene targeting is inefficient in Plasmodium. Here, we established shuttle transposon mutagenesis in Plasmodium berghei. We constructed a mini-Tn5 derivative that can transpose into parasite genes cloned in Escherichia coli, providing an efficient means of generating knockout fragments. A 10(4)-fold increase in frequencies of double-crossover homologous recombination in the parasite using a new electroporation technology permits to reproducibly generate pools of distinct mutants after transfection with mini-Tn5-interrupted sequences. The procedure opens the way to the systematic identification of essential genes in Plasmodium.


Asunto(s)
Elementos Transponibles de ADN , Mutagénesis Insercional/métodos , Plasmodium berghei/genética , Animales , Clonación Molecular , ADN Protozoario/genética , Electroporación , Escherichia coli/genética , Genes Protozoarios , Recombinación Genética , Transfección
7.
Curr Issues Mol Biol ; 7(1): 39-55, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15580779

RESUMEN

Genome manipulation, the primary tool for assigning function to sequence, will be essential for understanding Plasmodium biology and malaria pathogenesis in molecular terms. The first success in transfecting Plasmodium was reported almost ten years ago. Gene-targeting studies have since flourished, as Plasmodium is haploid and integrates DNA only by homologous recombination. These studies have shed new light on the function of many proteins, including vaccine candidates and drug resistance factors. However, many essential proteins, including those involved in parasite invasion of erythrocytes, cannot be characterized in the absence of conditional mutagenesis. Proteins also cannot be identified on a functional basis as random DNA integration has not been achieved. We overview here the ways in which the Plasmodium genome can be manipulated. We also point to the tools that should be established if our goal is to address parasite infectivity in a systematic way and to conduct refined structure-function analysis of selected products.


Asunto(s)
Animales Modificados Genéticamente , Ingeniería Genética , Plasmodium/genética , Animales , Marcación de Gen , Interferencia de ARN , Transfección
8.
Proc Natl Acad Sci U S A ; 101(41): 14931-6, 2004 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-15465918

RESUMEN

Reverse genetics in Plasmodium, the genus of parasites that cause malaria, still faces major limitations. Only red blood cell stages of this haploid parasite can be transfected. Consequently, the function of many essential genes in these and subsequent stages, including those encoding vaccine candidates, cannot be addressed genetically. Here, we establish conditional mutagenesis in Plasmodium by using site-specific recombination and the Flp/FRT system of yeast. Site-specific recombination is induced after cross-fertilization in the mosquito vector of two clones containing either the target sequence flanked by two FRT sites or the Flp recombinase. Parasites that have undergone recombination are recognized in the cross progeny through the expression of a fluorescence marker. This approach should permit to dissect the function of any essential gene of Plasmodium during the haploid phase of its life, i.e., during infection of salivary glands in the mosquito and infection of both the liver and red blood cells in the mammal.


Asunto(s)
Plasmodium berghei/genética , Animales , Cruzamientos Genéticos , Fertilización , Genotipo , Humanos , Mutagénesis , Plásmidos/genética , Plasmodium berghei/fisiología , Recombinación Genética , Eliminación de Secuencia , Tetrahidrofolato Deshidrogenasa/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA