Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Metab ; 35(5): 732-734, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37137287

RESUMEN

A recent study by Titos et al. in Cell shows that protein-rich diets are strong modulators of sleep depth in Drosophila and identifies the gut-secreted neuropeptide CCHa1 as the mediator of this effect. In the brain, CCHa1 controls dopamine release from a small set of neurons, thereby modulating arousability by integrating internal state with sensory information.


Asunto(s)
Proteínas de Drosophila , Neuropéptidos , Animales , Proteínas de Drosophila/metabolismo , Sueño , Drosophila/fisiología , Neuropéptidos/metabolismo , Encéfalo/metabolismo , Drosophila melanogaster/metabolismo
2.
Science ; 375(6584): eabk2432, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35239393

RESUMEN

For more than 100 years, the fruit fly Drosophila melanogaster has been one of the most studied model organisms. Here, we present a single-cell atlas of the adult fly, Tabula Drosophilae, that includes 580,000 nuclei from 15 individually dissected sexed tissues as well as the entire head and body, annotated to >250 distinct cell types. We provide an in-depth analysis of cell type-related gene signatures and transcription factor markers, as well as sexual dimorphism, across the whole animal. Analysis of common cell types between tissues, such as blood and muscle cells, reveals rare cell types and tissue-specific subtypes. This atlas provides a valuable resource for the Drosophila community and serves as a reference to study genetic perturbations and disease models at single-cell resolution.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/genética , Transcriptoma , Animales , Núcleo Celular/metabolismo , Bases de Datos Genéticas , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Femenino , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Genes de Insecto , Masculino , RNA-Seq , Caracteres Sexuales , Análisis de la Célula Individual , Factores de Transcripción/genética
3.
Nat Metab ; 2(9): 958-973, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32868922

RESUMEN

Cellular metabolic reprogramming is an important mechanism by which cells rewire their metabolism to promote proliferation and cell growth. This process has been mostly studied in the context of tumorigenesis, but less is known about its relevance for nonpathological processes and how it affects whole-animal physiology. Here, we show that metabolic reprogramming in Drosophila female germline cells affects nutrient preferences of animals. Egg production depends on the upregulation of the activity of the pentose phosphate pathway in the germline, which also specifically increases the animal's appetite for sugar, the key nutrient fuelling this metabolic pathway. We provide functional evidence that the germline alters sugar appetite by regulating the expression of the fat-body-secreted satiety factor Fit. Our findings demonstrate that the cellular metabolic program of a small set of cells is able to increase the animal's preference for specific nutrients through inter-organ communication to promote specific metabolic and cellular outcomes.


Asunto(s)
Apetito/fisiología , Reprogramación Celular/fisiología , Drosophila/metabolismo , Azúcares , Animales , Diversidad de Anticuerpos , Carcinogénesis , Carbohidratos de la Dieta/farmacología , Cuerpo Adiposo/metabolismo , Femenino , Preferencias Alimentarias , Hambre/fisiología , Ovario/fisiología , Vía de Pentosa Fosfato , Inanición
4.
Nat Commun ; 11(1): 4236, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32843654

RESUMEN

The impact of commensal bacteria on the host arises from complex microbial-diet-host interactions. Mapping metabolic interactions in gut microbial communities is therefore key to understand how the microbiome influences the host. Here we use an interdisciplinary approach including isotope-resolved metabolomics to show that in Drosophila melanogaster, Acetobacter pomorum (Ap) and Lactobacillus plantarum (Lp) a syntrophic relationship is established to overcome detrimental host diets and identify Ap as the bacterium altering the host's feeding decisions. Specifically, we show that Ap uses the lactate produced by Lp to supply amino acids that are essential to Lp, allowing it to grow in imbalanced diets. Lactate is also necessary and sufficient for Ap to alter the fly's protein appetite. Our data show that gut bacterial communities use metabolic interactions to become resilient to detrimental host diets. These interactions also ensure the constant flow of metabolites used by the microbiome to alter reproduction and host behaviour.


Asunto(s)
Dieta , Drosophila melanogaster/microbiología , Drosophila melanogaster/fisiología , Microbioma Gastrointestinal/fisiología , Acetobacter/crecimiento & desarrollo , Acetobacter/metabolismo , Aminoácidos/deficiencia , Aminoácidos/metabolismo , Animales , Apetito , Femenino , Preferencias Alimentarias , Interacciones Microbiota-Huesped , Ácido Láctico/metabolismo , Lactobacillus plantarum/crecimiento & desarrollo , Lactobacillus plantarum/metabolismo , Redes y Vías Metabólicas , Metabolómica , Consorcios Microbianos , Reproducción
5.
Elife ; 82019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31182187

RESUMEN

The centrosome is composed of two centrioles surrounded by a microtubule-nucleating pericentriolar material (PCM). Although centrioles are known to regulate PCM assembly, it is less known whether and how the PCM contributes to centriole assembly. Here we investigate the interaction between centriole components and the PCM by taking advantage of fission yeast, which has a centriole-free, PCM-containing centrosome, the SPB. Surprisingly, we observed that several ectopically-expressed animal centriole components such as SAS-6 are recruited to the SPB. We revealed that a conserved PCM component, Pcp1/pericentrin, interacts with and recruits SAS-6. This interaction is conserved and important for centriole assembly, particularly its elongation. We further explored how yeasts kept this interaction even after centriole loss and showed that the conserved calmodulin-binding region of Pcp1/pericentrin is critical for SAS-6 interaction. Our work suggests that the PCM not only recruits and concentrates microtubule-nucleators, but also the centriole assembly machinery, promoting biogenesis close by.


Asunto(s)
Antígenos/metabolismo , Centriolos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Animales , Animales Modificados Genéticamente , Antígenos/genética , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Microscopía Confocal , Microtúbulos/metabolismo , Unión Proteica , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Espermatozoides/citología , Espermatozoides/metabolismo , Imagen de Lapso de Tiempo/métodos
6.
J Insect Physiol ; 106(Pt 1): 30-35, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28842196

RESUMEN

How animals survey internal nutrient availability to modulate specific appetites is currently largely unknown. Dietary proteins have a profound impact on the reproductive capacity and the selection of food sources in insects. When deprived of dietary proteins, insects stop producing eggs and develop strong protein appetites. In many adult insects, the ovaries are the site of synthesis of the ecdysone hormone. Therefore, an attractive hypothesis is that protein availability changes the gonadal production of ecdysone, which instructs the brain to increase its preference for yeast. We combine quantitative feeding assays, dietary manipulations, hormonal measurements, and genetic germline manipulations to test this hypothesis in Drosophila melanogaster. Our results show that upon yeast deprivation mated adult female Drosophila develop a strong yeast appetite and strongly reduce their egg production. This dietary manipulation also leads to a drastic reduction in ecdysone titers. However, the drop in ecdysone is not linked to the increase in yeast appetite as mutants with impaired oogenesis are able to adapt yeast intake to their nutrient state while displaying a constitutive low ecdysone titer. Interestingly, a low ecdysone titer is correlated with a lower level of overall food intake. Our data therefore show that in mated females the level of ecdysone reflects the level of protein in the diet and the physiological state of the ovaries. While the ovaries and ecdysone are unlikely to instruct the brain to develop a yeast appetite upon protein deprivation, they seem to be able to control overall food intake.


Asunto(s)
Apetito/fisiología , Proteínas en la Dieta , Drosophila/metabolismo , Ecdisona/metabolismo , Ovario/metabolismo , Animales , Conducta Alimentaria , Femenino , Masculino , Levaduras
7.
PLoS Biol ; 15(4): e2000862, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28441450

RESUMEN

Choosing the right nutrients to consume is essential to health and wellbeing across species. However, the factors that influence these decisions are poorly understood. This is particularly true for dietary proteins, which are important determinants of lifespan and reproduction. We show that in Drosophila melanogaster, essential amino acids (eAAs) and the concerted action of the commensal bacteria Acetobacter pomorum and Lactobacilli are critical modulators of food choice. Using a chemically defined diet, we show that the absence of any single eAA from the diet is sufficient to elicit specific appetites for amino acid (AA)-rich food. Furthermore, commensal bacteria buffer the animal from the lack of dietary eAAs: both increased yeast appetite and decreased reproduction induced by eAA deprivation are rescued by the presence of commensals. Surprisingly, these effects do not seem to be due to changes in AA titers, suggesting that gut bacteria act through a different mechanism to change behavior and reproduction. Thus, eAAs and commensal bacteria are potent modulators of feeding decisions and reproductive output. This demonstrates how the interaction of specific nutrients with the microbiome can shape behavioral decisions and life history traits.


Asunto(s)
Acetobacter/fisiología , Aminoácidos Esenciales/metabolismo , Drosophila melanogaster/microbiología , Conducta Alimentaria , Microbioma Gastrointestinal , Lactobacillus/fisiología , Simbiosis , Acetobacter/genética , Acetobacter/crecimiento & desarrollo , Acetobacteraceae/genética , Acetobacteraceae/crecimiento & desarrollo , Acetobacteraceae/fisiología , Aminoácidos Esenciales/administración & dosificación , Aminoácidos Esenciales/análisis , Aminoácidos Esenciales/deficiencia , Animales , Animales Modificados Genéticamente , Regulación del Apetito , Conducta Animal , Mezclas Complejas/administración & dosificación , Mezclas Complejas/química , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Enterococcus faecalis/genética , Enterococcus faecalis/crecimiento & desarrollo , Enterococcus faecalis/fisiología , Femenino , Preferencias Alimentarias , Técnicas de Inactivación de Genes , Interacciones Huésped-Parásitos , Lactobacillus/genética , Lactobacillus/crecimiento & desarrollo , Oviposición , Especificidad de la Especie , Levadura Seca/química
8.
Dev Cell ; 23(2): 412-24, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22898782

RESUMEN

Cilia and flagella are involved in a variety of processes and human diseases, including ciliopathies and sterility. Their motility is often controlled by a central microtubule (MT) pair localized within the ciliary MT-based skeleton, the axoneme. We characterized the formation of the motility apparatus in detail in Drosophila spermatogenesis. We show that assembly of the central MT pair starts prior to the meiotic divisions, with nucleation of a singlet MT within the basal body of a small cilium, and that the second MT of the pair only assembles much later, upon flagella formation. BLD10/CEP135, a conserved player in centriole and flagella biogenesis, can bind and stabilize MTs and is required for the early steps of central MT pair formation. This work describes a genetically tractable system to study motile cilia formation and provides an explanation for BLD10/CEP135's role in assembling highly stable MT-based structures, such as motile axonemes and centrioles.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Flagelos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Masculino , Microscopía Electrónica de Transmisión , Unión Proteica , Espermatogénesis
9.
J Cell Biol ; 194(2): 165-75, 2011 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-21788366

RESUMEN

Centrioles/basal bodies (CBBs) are microtubule-based cylindrical organelles that nucleate the formation of centrosomes, cilia, and flagella. CBBs, cilia, and flagella are ancestral structures; they are present in all major eukaryotic groups. Despite the conservation of their core structure, there is variability in their architecture, function, and biogenesis. Recent genomic and functional studies have provided insight into the evolution of the structure and function of these organelles.


Asunto(s)
Centriolos/metabolismo , Cilios/metabolismo , Flagelos/metabolismo , Animales , Centriolos/genética , Centriolos/ultraestructura , Cilios/genética , Cilios/ultraestructura , Flagelos/genética , Flagelos/ultraestructura , Humanos , Filogenia
10.
J Cell Sci ; 123(Pt 9): 1414-26, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20392737

RESUMEN

The centriole and basal body (CBB) structure nucleates cilia and flagella, and is an essential component of the centrosome, underlying eukaryotic microtubule-based motility, cell division and polarity. In recent years, components of the CBB-assembly machinery have been identified, but little is known about their regulation and evolution. Given the diversity of cellular contexts encountered in eukaryotes, but the remarkable conservation of CBB morphology, we asked whether general mechanistic principles could explain CBB assembly. We analysed the distribution of each component of the human CBB-assembly machinery across eukaryotes as a strategy to generate testable hypotheses. We found an evolutionarily cohesive and ancestral module, which we term UNIMOD and is defined by three components (SAS6, SAS4/CPAP and BLD10/CEP135), that correlates with the occurrence of CBBs. Unexpectedly, other players (SAK/PLK4, SPD2/CEP192 and CP110) emerged in a taxon-specific manner. We report that gene duplication plays an important role in the evolution of CBB components and show that, in the case of BLD10/CEP135, this is a source of tissue specificity in CBB and flagella biogenesis. Moreover, we observe extreme protein divergence amongst CBB components and show experimentally that there is loss of cross-species complementation among SAK/PLK4 family members, suggesting species-specific adaptations in CBB assembly. We propose that the UNIMOD theory explains the conservation of CBB architecture and that taxon- and tissue-specific molecular innovations, gained through emergence, duplication and divergence, play important roles in coordinating CBB biogenesis and function in different cellular contexts.


Asunto(s)
Centriolos/química , Centriolos/metabolismo , Evolución Molecular , Proteínas/metabolismo , Animales , Secuencia de Bases , Centriolos/genética , Variación Genética , Humanos , Especificidad de Órganos , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo
11.
Trends Cell Biol ; 18(1): 8-11, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18068367

RESUMEN

Centrioles lead an important double life: they can give rise to the centrosome or convert to basal bodies and template cilia. Little is known about the control of centriole fate. Spektor and colleagues have now identified a centriolar complex, composed of CP110 and CEP97, which inhibits centriole to basal body conversion, preventing cilia formation. This work paves the way to understanding centriole and cilia biogenesis, which are two processes misregulated in human diseases, such as cancer and polycystic kidney disease.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/fisiología , Centrosoma/metabolismo , Cilios/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Animales , Línea Celular , Regulación de la Expresión Génica , Humanos , Ratones , Células 3T3 NIH
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...