RESUMEN
Blumeria graminis f.sp. tritici (syn. Erysiphe graminis f.sp. tritici) causes an important disease of wheat (powdery mildew) to which Hordeum vulgare and H. chilense are resistant. The study of chromosomal addition lines of H. vulgare and H. chilense in wheat showed that they possessed resistance to wheat powdery mildew. This was expressed as a reduction of disease severity but it was not associated with increased macroscopically visible necrosis. The resistance is of broad genetic basis, conferred by gene(s) present on different chromosomes of both H. vulgare and H. chilense. The feasibility of transferring this resistance to wheat is discussed.
Asunto(s)
Ascomicetos/fisiología , Hordeum/genética , Enfermedades de las Plantas/genética , Triticum/genética , Mapeo Cromosómico , Cromosomas/genética , Estudios de Factibilidad , Técnicas de Transferencia de Gen , Genes de Plantas , Predisposición Genética a la Enfermedad/genética , Hibridación Genética , Inmunidad Innata/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Triticum/microbiologíaRESUMEN
Hordeum chilense is a South American wild barley with high potential for cereal breeding given its high crossability with other members of the Triticeae. In the present paper we consider the resistance of H. chilense to several fungal diseases and the prospects for its transference to cultivated cereals. All H. chilense accessions studied are resistant to the barley, wheat and rye brown rusts, the powdery mildews of wheat, barley, rye and oat, to Septoria leaf blotch, common bunt and to loose smuts, which suggests that H. chilense is a non-host of these diseases. There are also lines resistant to wheat and barley yellow rust, stem rust and to Agropyron leaf rust, as well as lines giving moderate levels of resistance to Septoria glume blotch, tan spot and Fusarium head blight. Some H. chilense lines display pre-appressorial avoidance to brown rust. Lines differ in the degree of haustorium formation by rust and mildew fungi they permit, and in the degree to which a hypersensitive response occurs after haustoria are formed. Unfortunately, resistance of H. chilense to rust fungi is not expressed in tritordeum hybrids, nor in chromosome addition lines in wheat. In tritordeum, H. chilense contributes quantitative resistance to wheat powdery mildew, tan spot and loose smut. The resistance to mildew, expressed as a reduced disease severity, is not associated with macroscopically visible necrosis. Hexaploid tritordeums are immune to Septoria leaf blotch and to common bunt although resistance to both is slightly diluted in octoploid tritordeums. Studies with addition lines in wheat indicate that the resistance of H. chilense to powdery mildew, Septoria leaf blotch and common bunt is of broad genetic basis, conferred by genes present on various chromosomes.