Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 154(8): 084306, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33639749

RESUMEN

We review experimental and theoretical cross sections for electron transport in α-tetrahydrofurfuryl alcohol (THFA) and, in doing so, propose a plausible complete set. To assess the accuracy and self-consistency of our proposed set, we use the pulsed-Townsend technique to measure drift velocities, longitudinal diffusion coefficients, and effective Townsend first ionization coefficients for electron swarms in admixtures of THFA in argon, across a range of density-reduced electric fields from 1 to 450 Td. These measurements are then compared to simulated values derived from our proposed set using a multi-term solution of Boltzmann's equation. We observe discrepancies between the simulation and experiment, which we attempt to address by employing a neural network model that is trained to solve the inverse swarm problem of unfolding the cross sections underpinning our experimental swarm measurements. What results from our neural network-based analysis is a refined set of electron-THFA cross sections, which we confirm is of higher consistency with our swarm measurements than that which we initially proposed. We also use our database to calculate electron transport coefficients in pure THFA across a range of reduced electric fields from 0.001 to 10 000 Td.

2.
J Chem Phys ; 147(19): 195103, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29166101

RESUMEN

The drift velocity and first Townsend ionization coefficient of electrons in gaseous tetrahydrofuran are measured over the range of reduced electric fields 4-1000 Td using a pulsed-Townsend technique. The measured drift velocities and Townsend ionization coefficients are subsequently used, in conjunction with a multi-term Boltzmann equation analysis, as a further discriminative assessment on the accuracy and completeness of a recently proposed set of electron-THF vapor cross sections. In addition, the sensitivity of the transport coefficients to uncertainties in the existing cross sections is presented. As a result of that analysis, a refinement of the momentum transfer cross section for electron-THF scattering is presented, along with modifications to the neutral dissociation and dissociative electron attachment cross sections. With these changes to the cross section database, we find relatively good self-consistency between the measured and simulated drift velocities and Townsend coefficients.


Asunto(s)
Electrones , Furanos/química , Transporte de Electrón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...